未验证 提交 f8a4b1cb 编写于 作者: W whs 提交者: GitHub

Refine tutorials of sensitivity analysis (#80)

上级 c4e11733
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 图像分类模型通道剪裁-敏感度分析\n",
"\n",
"该教程以图像分类模型MobileNetV1为例,说明如何快速使用[PaddleSlim的敏感度分析接口](https://paddlepaddle.github.io/PaddleSlim/api/prune_api/#sensitivity)。\n",
"该示例包含以下步骤:\n",
"\n",
"1. 导入依赖\n",
"2. 构建模型\n",
"3. 定义输入数据\n",
"4. 定义模型评估方法\n",
"5. 训练模型\n",
"6. 获取待分析卷积参数名称\n",
"7. 分析敏感度\n",
"8. 剪裁模型\n",
"\n",
"以下章节依次次介绍每个步骤的内容。\n",
"\n",
"## 1. 导入依赖\n",
"\n",
"PaddleSlim依赖Paddle1.7版本,请确认已正确安装Paddle,然后按以下方式导入Paddle和PaddleSlim:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import paddle\n",
"import paddle.fluid as fluid\n",
"import paddleslim as slim"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. 构建网络\n",
"\n",
"该章节构造一个用于对MNIST数据进行分类的分类模型,选用`MobileNetV1`,并将输入大小设置为`[1, 28, 28]`,输出类别数为10。\n",
"为了方便展示示例,我们在`paddleslim.models`下预定义了用于构建分类模型的方法,执行以下代码构建分类模型:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"exe, train_program, val_program, inputs, outputs = slim.models.image_classification(\"MobileNet\", [1, 28, 28], 10, use_gpu=True)\n",
"place = fluid.CUDAPlace(0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3 定义输入数据\n",
"\n",
"为了快速执行该示例,我们选取简单的MNIST数据,Paddle框架的`paddle.dataset.mnist`包定义了MNIST数据的下载和读取。\n",
"代码如下:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import paddle.dataset.mnist as reader\n",
"train_reader = paddle.batch(\n",
" reader.train(), batch_size=128, drop_last=True)\n",
"test_reader = paddle.batch(\n",
" reader.test(), batch_size=128, drop_last=True)\n",
"data_feeder = fluid.DataFeeder(inputs, place)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. 定义模型评估方法\n",
"\n",
"在计算敏感度时,需要裁剪单个卷积层后的模型在测试数据上的效果,我们定义以下方法实现该功能:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"def test(program):\n",
" acc_top1_ns = []\n",
" acc_top5_ns = []\n",
" for data in test_reader():\n",
" acc_top1_n, acc_top5_n, _ = exe.run(\n",
" program,\n",
" feed=data_feeder.feed(data),\n",
" fetch_list=outputs)\n",
" acc_top1_ns.append(np.mean(acc_top1_n))\n",
" acc_top5_ns.append(np.mean(acc_top5_n))\n",
" print(\"Final eva - acc_top1: {}; acc_top5: {}\".format(\n",
" np.mean(np.array(acc_top1_ns)), np.mean(np.array(acc_top5_ns))))\n",
" return np.mean(np.array(acc_top1_ns))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5. 训练模型\n",
"\n",
"只有训练好的模型才能做敏感度分析,因为该示例任务相对简单,我这里用训练一个`epoch`产出的模型做敏感度分析。对于其它训练比较耗时的模型,您可以加载训练好的模型权重。\n",
"\n",
"以下为模型训练代码:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.984375 1.0 0.04038039\n"
]
}
],
"source": [
"for data in train_reader():\n",
" acc1, acc5, loss = exe.run(train_program, feed=data_feeder.feed(data), fetch_list=outputs)\n",
"print(np.mean(acc1), np.mean(acc5), np.mean(loss))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"用上节定义的模型评估方法,评估当前模型在测试集上的精度:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Final eva - acc_top1: 0.9574319124221802; acc_top5: 0.999098539352417\n"
]
},
{
"data": {
"text/plain": [
"0.9574319"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"test(val_program)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6. 获取待分析卷积参数\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['conv2_1_sep_weights', 'conv2_2_sep_weights', 'conv3_1_sep_weights', 'conv3_2_sep_weights', 'conv4_1_sep_weights', 'conv4_2_sep_weights', 'conv5_1_sep_weights', 'conv5_2_sep_weights', 'conv5_3_sep_weights', 'conv5_4_sep_weights', 'conv5_5_sep_weights', 'conv5_6_sep_weights', 'conv6_sep_weights']\n"
]
}
],
"source": [
"params = []\n",
"for param in train_program.global_block().all_parameters():\n",
" if \"_sep_weights\" in param.name:\n",
" params.append(param.name)\n",
"print(params)\n",
"params = params[:5]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 7. 分析敏感度\n",
"\n",
"### 7.1 简单计算敏感度"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"调用[sensitivity接口](https://paddlepaddle.github.io/PaddleSlim/api/prune_api/#sensitivity)对训练好的模型进行敏感度分析。\n",
"\n",
"在计算过程中,敏感度信息会不断追加保存到选项`sensitivities_file`指定的文件中,该文件中已有的敏感度信息不会被重复计算。\n",
"\n",
"先用以下命令删除当前路径下可能已有的`sensitivities_0.data`文件:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"!rm -rf sensitivities_0.data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"除了指定待分析的卷积层参数,我们还可以指定敏感度分析的粒度和范围,即单个卷积层参数分别被剪裁掉的比例。\n",
"\n",
"如果待分析的模型比较敏感,剪掉单个卷积层的40%的通道,模型在测试集上的精度损失就达90%,那么`pruned_ratios`最大设置到0.4即可,比如:\n",
"`[0.1, 0.2, 0.3, 0.4]`\n",
"\n",
"为了得到更精确的敏感度信息,我可以适当调小`pruned_ratios`的粒度,比如:`[0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4]`\n",
"\n",
"`pruned_ratios`的粒度越小,计算敏感度的速度越慢。"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2020-02-04 15:29:33,091-INFO: sensitive - param: conv2_2_sep_weights; ratios: 0.1\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Final eva - acc_top1: 0.9574319124221802; acc_top5: 0.999098539352417\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2020-02-04 15:29:35,971-INFO: pruned param: conv2_2_sep_weights; 0.1; loss=0.025107262656092644\n",
"2020-02-04 15:29:35,975-INFO: sensitive - param: conv2_2_sep_weights; ratios: 0.2\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Final eva - acc_top1: 0.9333934187889099; acc_top5: 0.999098539352417\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2020-02-04 15:29:38,797-INFO: pruned param: conv2_2_sep_weights; 0.2; loss=0.04069465771317482\n",
"2020-02-04 15:29:38,801-INFO: sensitive - param: conv2_1_sep_weights; ratios: 0.1\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Final eva - acc_top1: 0.9184695482254028; acc_top5: 0.9983974099159241\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2020-02-04 15:29:42,056-INFO: pruned param: conv2_1_sep_weights; 0.1; loss=0.035987019538879395\n",
"2020-02-04 15:29:42,059-INFO: sensitive - param: conv2_1_sep_weights; ratios: 0.2\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Final eva - acc_top1: 0.9229767918586731; acc_top5: 0.9989984035491943\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2020-02-04 15:29:45,121-INFO: pruned param: conv2_1_sep_weights; 0.2; loss=0.031697917729616165\n",
"2020-02-04 15:29:45,124-INFO: sensitive - param: conv3_1_sep_weights; ratios: 0.1\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Final eva - acc_top1: 0.9270833134651184; acc_top5: 0.999098539352417\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2020-02-04 15:29:48,070-INFO: pruned param: conv3_1_sep_weights; 0.1; loss=-0.00010458791075507179\n",
"2020-02-04 15:29:48,073-INFO: sensitive - param: conv3_1_sep_weights; ratios: 0.2\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Final eva - acc_top1: 0.9575320482254028; acc_top5: 0.9992988705635071\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2020-02-04 15:29:51,172-INFO: pruned param: conv3_1_sep_weights; 0.2; loss=0.004707638639956713\n",
"2020-02-04 15:29:51,174-INFO: sensitive - param: conv4_1_sep_weights; ratios: 0.1\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Final eva - acc_top1: 0.9529246687889099; acc_top5: 0.9993990659713745\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2020-02-04 15:29:54,379-INFO: pruned param: conv4_1_sep_weights; 0.1; loss=0.0015692544402554631\n",
"2020-02-04 15:29:54,382-INFO: sensitive - param: conv4_1_sep_weights; ratios: 0.2\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Final eva - acc_top1: 0.9559294581413269; acc_top5: 0.9993990659713745\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2020-02-04 15:29:57,316-INFO: pruned param: conv4_1_sep_weights; 0.2; loss=0.001987668452784419\n",
"2020-02-04 15:29:57,319-INFO: sensitive - param: conv3_2_sep_weights; ratios: 0.1\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Final eva - acc_top1: 0.9555288553237915; acc_top5: 0.9989984035491943\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2020-02-04 15:30:00,300-INFO: pruned param: conv3_2_sep_weights; 0.1; loss=-0.005021402612328529\n",
"2020-02-04 15:30:00,306-INFO: sensitive - param: conv3_2_sep_weights; ratios: 0.2\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Final eva - acc_top1: 0.9622395634651184; acc_top5: 0.999098539352417\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2020-02-04 15:30:03,400-INFO: pruned param: conv3_2_sep_weights; 0.2; loss=0.0008369522984139621\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Final eva - acc_top1: 0.9566305875778198; acc_top5: 0.9991987347602844\n",
"{'conv2_2_sep_weights': {0.1: 0.025107263, 0.2: 0.040694658}, 'conv2_1_sep_weights': {0.1: 0.03598702, 0.2: 0.031697918}, 'conv3_1_sep_weights': {0.1: -0.00010458791, 0.2: 0.0047076386}, 'conv4_1_sep_weights': {0.1: 0.0015692544, 0.2: 0.0019876685}, 'conv3_2_sep_weights': {0.1: -0.0050214026, 0.2: 0.0008369523}}\n"
]
}
],
"source": [
"sens_0 = slim.prune.sensitivity(\n",
" val_program,\n",
" place,\n",
" params,\n",
" test,\n",
" sensitivities_file=\"sensitivities_0.data\",\n",
" pruned_ratios=[0.1, 0.2])\n",
"print(sens_0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 7.2 扩展敏感度信息\n",
"\n",
"第7.1节计算敏感度用的是`pruned_ratios=[0.1, 0.2]`, 我们可以在此基础上将其扩展到`[0.1, 0.2, 0.3]`"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2020-02-04 15:30:16,173-INFO: sensitive - param: conv2_2_sep_weights; ratios: 0.3\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Final eva - acc_top1: 0.9574319124221802; acc_top5: 0.999098539352417\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2020-02-04 15:30:19,087-INFO: pruned param: conv2_2_sep_weights; 0.3; loss=0.2279527187347412\n",
"2020-02-04 15:30:19,091-INFO: sensitive - param: conv2_1_sep_weights; ratios: 0.3\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Final eva - acc_top1: 0.739182710647583; acc_top5: 0.9918870329856873\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2020-02-04 15:30:22,079-INFO: pruned param: conv2_1_sep_weights; 0.3; loss=0.08871221542358398\n",
"2020-02-04 15:30:22,082-INFO: sensitive - param: conv3_1_sep_weights; ratios: 0.3\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Final eva - acc_top1: 0.8724960088729858; acc_top5: 0.9975961446762085\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2020-02-04 15:30:24,974-INFO: pruned param: conv3_1_sep_weights; 0.3; loss=0.005439940840005875\n",
"2020-02-04 15:30:24,976-INFO: sensitive - param: conv4_1_sep_weights; ratios: 0.3\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Final eva - acc_top1: 0.952223539352417; acc_top5: 0.999098539352417\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2020-02-04 15:30:28,071-INFO: pruned param: conv4_1_sep_weights; 0.3; loss=0.03535936772823334\n",
"2020-02-04 15:30:28,073-INFO: sensitive - param: conv3_2_sep_weights; ratios: 0.3\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Final eva - acc_top1: 0.9235777258872986; acc_top5: 0.9978966116905212\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2020-02-04 15:30:31,068-INFO: pruned param: conv3_2_sep_weights; 0.3; loss=0.008055261336266994\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Final eva - acc_top1: 0.9497195482254028; acc_top5: 0.9986979365348816\n",
"{'conv2_2_sep_weights': {0.1: 0.025107263, 0.2: 0.040694658, 0.3: 0.22795272}, 'conv2_1_sep_weights': {0.1: 0.03598702, 0.2: 0.031697918, 0.3: 0.088712215}, 'conv3_1_sep_weights': {0.1: -0.00010458791, 0.2: 0.0047076386, 0.3: 0.005439941}, 'conv4_1_sep_weights': {0.1: 0.0015692544, 0.2: 0.0019876685, 0.3: 0.035359368}, 'conv3_2_sep_weights': {0.1: -0.0050214026, 0.2: 0.0008369523, 0.3: 0.008055261}}\n"
]
}
],
"source": [
"sens_0 = slim.prune.sensitivity(\n",
" val_program,\n",
" place,\n",
" params,\n",
" test,\n",
" sensitivities_file=\"sensitivities_0.data\",\n",
" pruned_ratios=[0.3])\n",
"print(sens_0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 7.3 多进程加速计算敏感度信息\n",
"\n",
"敏感度分析所用时间取决于待分析的卷积层数量和模型评估的速度,我们可以通过多进程的方式加速敏感度计算。\n",
"\n",
"在不同的进程设置不同`pruned_ratios`, 然后将结果合并。\n",
"\n",
"#### 7.3.1 多进程计算敏感度\n",
"\n",
"在以上章节,我们计算了`pruned_ratios=[0.1, 0.2, 0.3]`的敏感度,并将其保存到了文件`sensitivities_0.data`中。\n",
"\n",
"在另一个进程中,我们可以设置`pruned_ratios=[0.4]`,并将结果保存在文件`sensitivities_1.data`中。代码如下:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'conv2_2_sep_weights': {0.4: 0.06348718}, 'conv2_1_sep_weights': {0.4: 0.15917951}, 'conv4_1_sep_weights': {0.4: 0.16246155}, 'conv3_1_sep_weights': {0.4: 0.034871764}, 'conv3_2_sep_weights': {0.4: 0.115384646}}\n"
]
}
],
"source": [
"sens_1 = slim.prune.sensitivity(\n",
" val_program,\n",
" place,\n",
" params,\n",
" test,\n",
" sensitivities_file=\"sensitivities_1.data\",\n",
" pruned_ratios=[0.4])\n",
"print(sens_1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 7.3.2 加载多个进程产出的敏感度文件"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'conv2_2_sep_weights': {0.1: 0.025107263, 0.2: 0.040694658, 0.3: 0.22795272}, 'conv2_1_sep_weights': {0.1: 0.03598702, 0.2: 0.031697918, 0.3: 0.088712215}, 'conv3_1_sep_weights': {0.1: -0.00010458791, 0.2: 0.0047076386, 0.3: 0.005439941}, 'conv4_1_sep_weights': {0.1: 0.0015692544, 0.2: 0.0019876685, 0.3: 0.035359368}, 'conv3_2_sep_weights': {0.1: -0.0050214026, 0.2: 0.0008369523, 0.3: 0.008055261}}\n",
"{'conv2_2_sep_weights': {0.4: 0.06348718}, 'conv2_1_sep_weights': {0.4: 0.15917951}, 'conv4_1_sep_weights': {0.4: 0.16246155}, 'conv3_1_sep_weights': {0.4: 0.034871764}, 'conv3_2_sep_weights': {0.4: 0.115384646}}\n"
]
}
],
"source": [
"s_0 = slim.prune.load_sensitivities(\"sensitivities_0.data\")\n",
"s_1 = slim.prune.load_sensitivities(\"sensitivities_1.data\")\n",
"print(s_0)\n",
"print(s_1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 7.3.3 合并敏感度信息"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'conv2_2_sep_weights': {0.1: 0.025107263, 0.2: 0.040694658, 0.3: 0.22795272, 0.4: 0.06348718}, 'conv2_1_sep_weights': {0.1: 0.03598702, 0.2: 0.031697918, 0.3: 0.088712215, 0.4: 0.15917951}, 'conv3_1_sep_weights': {0.1: -0.00010458791, 0.2: 0.0047076386, 0.3: 0.005439941, 0.4: 0.034871764}, 'conv4_1_sep_weights': {0.1: 0.0015692544, 0.2: 0.0019876685, 0.3: 0.035359368, 0.4: 0.16246155}, 'conv3_2_sep_weights': {0.1: -0.0050214026, 0.2: 0.0008369523, 0.3: 0.008055261, 0.4: 0.115384646}}\n"
]
}
],
"source": [
"s = slim.prune.merge_sensitive([s_0, s_1])\n",
"print(s)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 8. 剪裁模型\n",
"\n",
"根据以上章节产出的敏感度信息,对模型进行剪裁。\n",
"\n",
"### 8.1 计算剪裁率\n",
"\n",
"首先,调用PaddleSlim提供的[get_ratios_by_loss](https://paddlepaddle.github.io/PaddleSlim/api/prune_api/#get_ratios_by_loss)方法根据敏感度计算剪裁率,通过调整参数`loss`大小获得合适的一组剪裁率:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'conv3_1_sep_weights': 0.3, 'conv4_1_sep_weights': 0.22400936122727166, 'conv3_2_sep_weights': 0.3}\n"
]
}
],
"source": [
"loss = 0.01\n",
"ratios = slim.prune.get_ratios_by_loss(s_0, loss)\n",
"print(ratios)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 8.2 剪裁训练网络"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"FLOPs before pruning: 10896832.0\n",
"FLOPs after pruning: 9777980.0\n"
]
}
],
"source": [
"pruner = slim.prune.Pruner()\n",
"print(\"FLOPs before pruning: {}\".format(slim.analysis.flops(train_program)))\n",
"pruned_program, _, _ = pruner.prune(\n",
" train_program,\n",
" fluid.global_scope(),\n",
" params=ratios.keys(),\n",
" ratios=ratios.values(),\n",
" place=place)\n",
"print(\"FLOPs after pruning: {}\".format(slim.analysis.flops(pruned_program)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 8.3 剪裁测试网络\n",
"\n",
">注意:对测试网络进行剪裁时,需要将`only_graph`设置为True,具体原因请参考[Pruner API文档](https://paddlepaddle.github.io/PaddleSlim/api/prune_api/#pruner)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"FLOPs before pruning: 10896832.0\n",
"FLOPs after pruning: 9777980.0\n"
]
}
],
"source": [
"pruner = slim.prune.Pruner()\n",
"print(\"FLOPs before pruning: {}\".format(slim.analysis.flops(val_program)))\n",
"pruned_val_program, _, _ = pruner.prune(\n",
" val_program,\n",
" fluid.global_scope(),\n",
" params=ratios.keys(),\n",
" ratios=ratios.values(),\n",
" place=place,\n",
" only_graph=True)\n",
"print(\"FLOPs after pruning: {}\".format(slim.analysis.flops(pruned_val_program)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"测试一下剪裁后的模型在测试集上的精度:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Final eva - acc_top1: 0.9721554517745972; acc_top5: 0.9995993375778198\n"
]
},
{
"data": {
"text/plain": [
"0.97215545"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"test(pruned_val_program)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 8.4 训练剪裁后的模型\n",
"\n",
"对剪裁后的模型在训练集上训练一个`epoch`:"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.984375 1.0 0.04675974\n"
]
}
],
"source": [
"for data in train_reader():\n",
" acc1, acc5, loss = exe.run(pruned_program, feed=data_feeder.feed(data), fetch_list=outputs)\n",
"print(np.mean(acc1), np.mean(acc5), np.mean(loss))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"测试训练后模型的精度:"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Final eva - acc_top1: 0.9721554517745972; acc_top5: 0.9995993375778198\n"
]
},
{
"data": {
"text/plain": [
"0.97215545"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"test(pruned_val_program)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
# 图像分类模型通道剪裁-敏感度分析
该教程以图像分类模型MobileNetV1为例,说明如何快速使用[PaddleSlim的敏感度分析接口](https://paddlepaddle.github.io/PaddleSlim/api/prune_api/#sensitivity)
该示例包含以下步骤:
1. 导入依赖
2. 构建模型
3. 定义输入数据
4. 定义模型评估方法
5. 训练模型
6. 获取待分析卷积参数名称
7. 分析敏感度
8. 剪裁模型
以下章节依次介绍每个步骤的内容。
## 1. 导入依赖
PaddleSlim依赖Paddle1.7版本,请确认已正确安装Paddle,然后按以下方式导入Paddle和PaddleSlim:
```python
import paddle
import paddle.fluid as fluid
import paddleslim as slim
```
## 2. 构建网络
该章节构造一个用于对MNIST数据进行分类的分类模型,选用`MobileNetV1`,并将输入大小设置为`[1, 28, 28]`,输出类别数为10。
为了方便展示示例,我们在`paddleslim.models`下预定义了用于构建分类模型的方法,执行以下代码构建分类模型:
```python
exe, train_program, val_program, inputs, outputs = slim.models.image_classification("MobileNet", [1, 28, 28], 10, use_gpu=True)
place = fluid.CUDAPlace(0)
```
## 3 定义输入数据
为了快速执行该示例,我们选取简单的MNIST数据,Paddle框架的`paddle.dataset.mnist`包定义了MNIST数据的下载和读取。
代码如下:
```python
import paddle.dataset.mnist as reader
train_reader = paddle.batch(
reader.train(), batch_size=128, drop_last=True)
test_reader = paddle.batch(
reader.test(), batch_size=128, drop_last=True)
data_feeder = fluid.DataFeeder(inputs, place)
```
## 4. 定义模型评估方法
在计算敏感度时,需要裁剪单个卷积层后的模型在测试数据上的效果,我们定义以下方法实现该功能:
```python
import numpy as np
def test(program):
acc_top1_ns = []
acc_top5_ns = []
for data in test_reader():
acc_top1_n, acc_top5_n, _ = exe.run(
program,
feed=data_feeder.feed(data),
fetch_list=outputs)
acc_top1_ns.append(np.mean(acc_top1_n))
acc_top5_ns.append(np.mean(acc_top5_n))
print("Final eva - acc_top1: {}; acc_top5: {}".format(
np.mean(np.array(acc_top1_ns)), np.mean(np.array(acc_top5_ns))))
return np.mean(np.array(acc_top1_ns))
```
## 5. 训练模型
只有训练好的模型才能做敏感度分析,因为该示例任务相对简单,我这里用训练一个`epoch`产出的模型做敏感度分析。对于其它训练比较耗时的模型,您可以加载训练好的模型权重。
以下为模型训练代码:
```python
for data in train_reader():
acc1, acc5, loss = exe.run(train_program, feed=data_feeder.feed(data), fetch_list=outputs)
print(np.mean(acc1), np.mean(acc5), np.mean(loss))
```
用上节定义的模型评估方法,评估当前模型在测试集上的精度:
```python
test(val_program)
```
## 6. 获取待分析卷积参数
```python
params = []
for param in train_program.global_block().all_parameters():
if "_sep_weights" in param.name:
params.append(param.name)
print(params)
params = params[:5]
```
## 7. 分析敏感度
### 7.1 简单计算敏感度
调用[sensitivity接口](https://paddlepaddle.github.io/PaddleSlim/api/prune_api/#sensitivity)对训练好的模型进行敏感度分析。
在计算过程中,敏感度信息会不断追加保存到选项`sensitivities_file`指定的文件中,该文件中已有的敏感度信息不会被重复计算。
先用以下命令删除当前路径下可能已有的`sensitivities_0.data`文件:
```python
!rm -rf sensitivities_0.data
```
除了指定待分析的卷积层参数,我们还可以指定敏感度分析的粒度和范围,即单个卷积层参数分别被剪裁掉的比例。
如果待分析的模型比较敏感,剪掉单个卷积层的40%的通道,模型在测试集上的精度损失就达90%,那么`pruned_ratios`最大设置到0.4即可,比如:
`[0.1, 0.2, 0.3, 0.4]`
为了得到更精确的敏感度信息,我可以适当调小`pruned_ratios`的粒度,比如:`[0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4]`
`pruned_ratios`的粒度越小,计算敏感度的速度越慢。
```python
sens_0 = slim.prune.sensitivity(
val_program,
place,
params,
test,
sensitivities_file="sensitivities_0.data",
pruned_ratios=[0.1, 0.2])
print(sens_0)
```
### 7.2 扩展敏感度信息
第7.1节计算敏感度用的是`pruned_ratios=[0.1, 0.2]`, 我们可以在此基础上将其扩展到`[0.1, 0.2, 0.3]`
```python
sens_0 = slim.prune.sensitivity(
val_program,
place,
params,
test,
sensitivities_file="sensitivities_0.data",
pruned_ratios=[0.3])
print(sens_0)
```
### 7.3 多进程加速计算敏感度信息
敏感度分析所用时间取决于待分析的卷积层数量和模型评估的速度,我们可以通过多进程的方式加速敏感度计算。
在不同的进程设置不同`pruned_ratios`, 然后将结果合并。
#### 7.3.1 多进程计算敏感度
在以上章节,我们计算了`pruned_ratios=[0.1, 0.2, 0.3]`的敏感度,并将其保存到了文件`sensitivities_0.data`中。
在另一个进程中,我们可以设置`pruned_ratios=[0.4]`,并将结果保存在文件`sensitivities_1.data`中。代码如下:
```python
sens_1 = slim.prune.sensitivity(
val_program,
place,
params,
test,
sensitivities_file="sensitivities_1.data",
pruned_ratios=[0.4])
print(sens_1)
```
#### 7.3.2 加载多个进程产出的敏感度文件
```python
s_0 = slim.prune.load_sensitivities("sensitivities_0.data")
s_1 = slim.prune.load_sensitivities("sensitivities_1.data")
print(s_0)
print(s_1)
```
#### 7.3.3 合并敏感度信息
```python
s = slim.prune.merge_sensitive([s_0, s_1])
print(s)
```
## 8. 剪裁模型
根据以上章节产出的敏感度信息,对模型进行剪裁。
### 8.1 计算剪裁率
首先,调用PaddleSlim提供的[get_ratios_by_loss](https://paddlepaddle.github.io/PaddleSlim/api/prune_api/#get_ratios_by_loss)方法根据敏感度计算剪裁率,通过调整参数`loss`大小获得合适的一组剪裁率:
```python
loss = 0.01
ratios = slim.prune.get_ratios_by_loss(s_0, loss)
print(ratios)
```
### 8.2 剪裁训练网络
```python
pruner = slim.prune.Pruner()
print("FLOPs before pruning: {}".format(slim.analysis.flops(train_program)))
pruned_program, _, _ = pruner.prune(
train_program,
fluid.global_scope(),
params=ratios.keys(),
ratios=ratios.values(),
place=place)
print("FLOPs after pruning: {}".format(slim.analysis.flops(pruned_program)))
```
### 8.3 剪裁测试网络
>注意:对测试网络进行剪裁时,需要将`only_graph`设置为True,具体原因请参考[Pruner API文档](https://paddlepaddle.github.io/PaddleSlim/api/prune_api/#pruner)
```python
pruner = slim.prune.Pruner()
print("FLOPs before pruning: {}".format(slim.analysis.flops(val_program)))
pruned_val_program, _, _ = pruner.prune(
val_program,
fluid.global_scope(),
params=ratios.keys(),
ratios=ratios.values(),
place=place,
only_graph=True)
print("FLOPs after pruning: {}".format(slim.analysis.flops(pruned_val_program)))
```
测试一下剪裁后的模型在测试集上的精度:
```python
test(pruned_val_program)
```
### 8.4 训练剪裁后的模型
对剪裁后的模型在训练集上训练一个`epoch`:
```python
for data in train_reader():
acc1, acc5, loss = exe.run(pruned_program, feed=data_feeder.feed(data), fetch_list=outputs)
print(np.mean(acc1), np.mean(acc5), np.mean(loss))
```
测试训练后模型的精度:
```python
test(pruned_val_program)
```
...@@ -5,6 +5,7 @@ nav: ...@@ -5,6 +5,7 @@ nav:
- 模型库: model_zoo.md - 模型库: model_zoo.md
- 教程: - 教程:
- 图像分类模型通道剪裁-快速开始: tutorials/pruning_tutorial.md - 图像分类模型通道剪裁-快速开始: tutorials/pruning_tutorial.md
- 图像分类模型通道剪裁-敏感度分析: tutorials/image_classification_sensitivity_analysis_tutorial.md
- 离线量化: tutorials/quant_post_demo.md - 离线量化: tutorials/quant_post_demo.md
- 量化训练: tutorials/quant_aware_demo.md - 量化训练: tutorials/quant_aware_demo.md
- Embedding量化: tutorials/quant_embedding_demo.md - Embedding量化: tutorials/quant_embedding_demo.md
......
...@@ -222,6 +222,7 @@ def get_ratios_by_loss(sensitivities, loss): ...@@ -222,6 +222,7 @@ def get_ratios_by_loss(sensitivities, loss):
ratios = {} ratios = {}
for param, losses in sensitivities.items(): for param, losses in sensitivities.items():
losses = losses.items() losses = losses.items()
losses = list(losses)
losses.sort() losses.sort()
for i in range(len(losses))[::-1]: for i in range(len(losses))[::-1]:
if losses[i][1] <= loss: if losses[i][1] <= loss:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册