Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
f550f78c
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 2 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f550f78c
编写于
7月 07, 2020
作者:
B
baiyfbupt
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
code update
上级
3ff0613a
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
277 addition
and
194 deletion
+277
-194
demo/bert/train_distill.py
demo/bert/train_distill.py
+184
-0
demo/bert/train_search.py
demo/bert/train_search.py
+63
-149
paddleslim/nas/darts/search_space/conv_bert/cls.py
paddleslim/nas/darts/search_space/conv_bert/cls.py
+2
-13
paddleslim/nas/darts/search_space/conv_bert/model/transformer_encoder.py
...darts/search_space/conv_bert/model/transformer_encoder.py
+27
-31
paddleslim/teachers/bert/reader/cls.py
paddleslim/teachers/bert/reader/cls.py
+1
-1
未找到文件。
demo/bert/train_distill.py
0 → 100755
浏览文件 @
f550f78c
import
numpy
as
np
from
itertools
import
izip
import
paddle.fluid
as
fluid
from
paddleslim.teachers.bert.reader.cls
import
*
from
paddleslim.nas.darts.search_space
import
AdaBERTClassifier
from
paddle.fluid.dygraph.base
import
to_variable
from
tqdm
import
tqdm
import
os
import
pickle
import
logging
from
paddleslim.common
import
AvgrageMeter
,
get_logger
logger
=
get_logger
(
__name__
,
level
=
logging
.
INFO
)
def
valid_one_epoch
(
model
,
valid_loader
,
epoch
,
log_freq
):
accs
=
AvgrageMeter
()
ce_losses
=
AvgrageMeter
()
model
.
student
.
eval
()
step_id
=
0
for
valid_data
in
valid_loader
():
try
:
loss
,
acc
,
ce_loss
,
_
,
_
=
model
.
_layers
.
loss
(
valid_data
,
epoch
)
except
:
loss
,
acc
,
ce_loss
,
_
,
_
=
model
.
loss
(
valid_data
,
epoch
)
batch_size
=
valid_data
[
0
].
shape
[
0
]
ce_losses
.
update
(
ce_loss
.
numpy
(),
batch_size
)
accs
.
update
(
acc
.
numpy
(),
batch_size
)
step_id
+=
1
return
ce_losses
.
avg
[
0
],
accs
.
avg
[
0
]
def
train_one_epoch
(
model
,
train_loader
,
optimizer
,
epoch
,
use_data_parallel
,
log_freq
):
total_losses
=
AvgrageMeter
()
accs
=
AvgrageMeter
()
ce_losses
=
AvgrageMeter
()
kd_losses
=
AvgrageMeter
()
model
.
student
.
train
()
step_id
=
0
for
train_data
in
train_loader
():
batch_size
=
train_data
[
0
].
shape
[
0
]
if
use_data_parallel
:
total_loss
,
acc
,
ce_loss
,
kd_loss
,
_
=
model
.
_layers
.
loss
(
train_data
,
epoch
)
else
:
total_loss
,
acc
,
ce_loss
,
kd_loss
,
_
=
model
.
loss
(
train_data
,
epoch
)
if
use_data_parallel
:
total_loss
=
model
.
scale_loss
(
total_loss
)
total_loss
.
backward
()
model
.
apply_collective_grads
()
else
:
total_loss
.
backward
()
optimizer
.
minimize
(
total_loss
)
model
.
clear_gradients
()
total_losses
.
update
(
total_loss
.
numpy
(),
batch_size
)
accs
.
update
(
acc
.
numpy
(),
batch_size
)
ce_losses
.
update
(
ce_loss
.
numpy
(),
batch_size
)
kd_losses
.
update
(
kd_loss
.
numpy
(),
batch_size
)
if
step_id
%
log_freq
==
0
:
logger
.
info
(
"Train Epoch {}, Step {}, Lr {:.6f} total_loss {:.6f}; ce_loss {:.6f}, kd_loss {:.6f}, train_acc {:.6f};"
.
format
(
epoch
,
step_id
,
optimizer
.
current_step_lr
(),
total_losses
.
avg
[
0
],
ce_losses
.
avg
[
0
],
kd_losses
.
avg
[
0
],
accs
.
avg
[
0
]))
step_id
+=
1
def
main
():
# whether use multi-gpus
use_data_parallel
=
False
place
=
fluid
.
CUDAPlace
(
fluid
.
dygraph
.
parallel
.
Env
(
).
dev_id
)
if
use_data_parallel
else
fluid
.
CUDAPlace
(
0
)
BERT_BASE_PATH
=
"./data/pretrained_models/uncased_L-12_H-768_A-12"
vocab_path
=
BERT_BASE_PATH
+
"/vocab.txt"
data_dir
=
"./data/glue_data/MNLI/"
teacher_model_dir
=
"./data/teacher_model/steps_23000"
do_lower_case
=
True
num_samples
=
392702
# augmented dataset nums
# num_samples = 8016987
max_seq_len
=
128
batch_size
=
192
hidden_size
=
768
emb_size
=
768
max_layer
=
8
epoch
=
80
log_freq
=
10
device_num
=
fluid
.
dygraph
.
parallel
.
Env
().
nranks
use_fixed_gumbel
=
True
train_phase
=
"train"
val_phase
=
"dev"
step_per_epoch
=
int
(
num_samples
/
(
batch_size
*
device_num
))
with
fluid
.
dygraph
.
guard
(
place
):
if
use_fixed_gumbel
:
# make sure gumbel arch is constant
np
.
random
.
seed
(
1
)
fluid
.
default_main_program
().
random_seed
=
1
model
=
AdaBERTClassifier
(
3
,
n_layer
=
max_layer
,
hidden_size
=
hidden_size
,
emb_size
=
emb_size
,
teacher_model
=
teacher_model_dir
,
data_dir
=
data_dir
,
use_fixed_gumbel
=
use_fixed_gumbel
)
learning_rate
=
fluid
.
dygraph
.
CosineDecay
(
2e-2
,
step_per_epoch
,
epoch
)
model_parameters
=
[]
for
p
in
model
.
parameters
():
if
(
p
.
name
not
in
[
a
.
name
for
a
in
model
.
arch_parameters
()]
and
p
.
name
not
in
[
a
.
name
for
a
in
model
.
teacher
.
parameters
()]):
model_parameters
.
append
(
p
)
optimizer
=
fluid
.
optimizer
.
MomentumOptimizer
(
learning_rate
,
0.9
,
regularization
=
fluid
.
regularizer
.
L2DecayRegularizer
(
3e-4
),
parameter_list
=
model_parameters
)
processor
=
MnliProcessor
(
data_dir
=
data_dir
,
vocab_path
=
vocab_path
,
max_seq_len
=
max_seq_len
,
do_lower_case
=
do_lower_case
,
in_tokens
=
False
)
train_reader
=
processor
.
data_generator
(
batch_size
=
batch_size
,
phase
=
train_phase
,
epoch
=
1
,
dev_count
=
1
,
shuffle
=
True
)
dev_reader
=
processor
.
data_generator
(
batch_size
=
batch_size
,
phase
=
val_phase
,
epoch
=
1
,
dev_count
=
1
,
shuffle
=
False
)
if
use_data_parallel
:
train_reader
=
fluid
.
contrib
.
reader
.
distributed_batch_reader
(
train_reader
)
train_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
capacity
=
128
,
use_double_buffer
=
True
,
iterable
=
True
,
return_list
=
True
)
dev_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
capacity
=
128
,
use_double_buffer
=
True
,
iterable
=
True
,
return_list
=
True
)
train_loader
.
set_batch_generator
(
train_reader
,
places
=
place
)
dev_loader
.
set_batch_generator
(
dev_reader
,
places
=
place
)
if
use_data_parallel
:
strategy
=
fluid
.
dygraph
.
parallel
.
prepare_context
()
model
=
fluid
.
dygraph
.
parallel
.
DataParallel
(
model
,
strategy
)
for
epoch_id
in
range
(
epoch
):
train_one_epoch
(
model
,
train_loader
,
optimizer
,
epoch_id
,
use_data_parallel
,
log_freq
)
loss
,
acc
=
valid_one_epoch
(
model
,
dev_loader
,
epoch_id
,
log_freq
)
logger
.
info
(
"dev set, ce_loss {:.6f}; acc: {:.6f};"
.
format
(
loss
,
acc
))
if
__name__
==
'__main__'
:
main
()
demo/bert/train_
cell_base
.py
→
demo/bert/train_
search
.py
浏览文件 @
f550f78c
...
@@ -13,41 +13,23 @@ from paddleslim.common import AvgrageMeter, get_logger
...
@@ -13,41 +13,23 @@ from paddleslim.common import AvgrageMeter, get_logger
logger
=
get_logger
(
__name__
,
level
=
logging
.
INFO
)
logger
=
get_logger
(
__name__
,
level
=
logging
.
INFO
)
def
count_parameters_in_MB
(
all_params
):
def
valid_one_epoch
(
model
,
valid_loader
,
epoch
,
log_freq
):
parameters_number
=
0
accs
=
AvgrageMeter
()
for
param
in
all_params
:
ce_losses
=
AvgrageMeter
()
if
param
.
trainable
:
model
.
student
.
eval
()
parameters_number
+=
np
.
prod
(
param
.
shape
)
return
parameters_number
/
1e6
def
preprocess_data
(
data_generator
,
data_nums
,
phase
,
cached_data
):
t
=
tqdm
(
total
=
data_nums
)
data_list
=
[]
for
data
in
tqdm
(
data_generator
()):
# data_var = []
# for d in data:
# tmp = fluid.core.LoDTensor()
# tmp.set(d, fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id))
# data_var.append(tmp)
data_list
.
append
(
data
)
t
.
update
(
data
[
0
].
shape
[
0
])
t
.
close
()
logger
.
info
(
"Saving {} data to {}"
.
format
(
phase
,
cached_data
+
phase
))
f
=
open
(
cached_data
+
phase
,
'wb'
)
pickle
.
dump
(
data_list
,
f
)
f
.
close
()
return
data_list
def
generator_reader
(
data_list
):
step_id
=
0
def
wrapper
():
for
valid_data
in
valid_loader
():
for
d
in
data_list
:
try
:
yield
d
loss
,
acc
,
ce_loss
,
_
,
_
=
model
.
_layers
.
loss
(
valid_data
,
epoch
)
except
:
loss
,
acc
,
ce_loss
,
_
,
_
=
model
.
loss
(
valid_data
,
epoch
)
return
wrapper
batch_size
=
valid_data
[
0
].
shape
[
0
]
ce_losses
.
update
(
ce_loss
.
numpy
(),
batch_size
)
accs
.
update
(
acc
.
numpy
(),
batch_size
)
step_id
+=
1
return
ce_losses
.
avg
[
0
],
accs
.
avg
[
0
]
def
train_one_epoch
(
model
,
train_loader
,
valid_loader
,
optimizer
,
def
train_one_epoch
(
model
,
train_loader
,
valid_loader
,
optimizer
,
...
@@ -57,19 +39,17 @@ def train_one_epoch(model, train_loader, valid_loader, optimizer,
...
@@ -57,19 +39,17 @@ def train_one_epoch(model, train_loader, valid_loader, optimizer,
ce_losses
=
AvgrageMeter
()
ce_losses
=
AvgrageMeter
()
kd_losses
=
AvgrageMeter
()
kd_losses
=
AvgrageMeter
()
val_accs
=
AvgrageMeter
()
val_accs
=
AvgrageMeter
()
model
.
train
()
model
.
student
.
train
()
step_id
=
0
step_id
=
0
for
train_data
,
valid_data
in
izip
(
train_loader
(),
valid_loader
()):
for
train_data
,
valid_data
in
izip
(
train_loader
(),
valid_loader
()):
#for train_data in train_loader():
batch_size
=
train_data
[
0
].
shape
[
0
]
batch_size
=
train_data
[
0
].
shape
[
0
]
# make sure arch on every gpu is same, otherwise an error will occurs
# make sure arch on every gpu is same
np
.
random
.
seed
(
step_id
*
2
*
(
epoch
+
1
))
np
.
random
.
seed
(
step_id
*
2
)
if
use_data_parallel
:
try
:
total_loss
,
acc
,
ce_loss
,
kd_loss
,
_
=
model
.
_layers
.
loss
(
total_loss
,
acc
,
ce_loss
,
kd_loss
,
_
=
model
.
_layers
.
loss
(
train_data
,
epoch
)
train_data
,
epoch
)
e
xcept
:
e
lse
:
total_loss
,
acc
,
ce_loss
,
kd_loss
,
_
=
model
.
loss
(
train_data
,
total_loss
,
acc
,
ce_loss
,
kd_loss
,
_
=
model
.
loss
(
train_data
,
epoch
)
epoch
)
...
@@ -86,12 +66,12 @@ def train_one_epoch(model, train_loader, valid_loader, optimizer,
...
@@ -86,12 +66,12 @@ def train_one_epoch(model, train_loader, valid_loader, optimizer,
ce_losses
.
update
(
ce_loss
.
numpy
(),
batch_size
)
ce_losses
.
update
(
ce_loss
.
numpy
(),
batch_size
)
kd_losses
.
update
(
kd_loss
.
numpy
(),
batch_size
)
kd_losses
.
update
(
kd_loss
.
numpy
(),
batch_size
)
# make sure arch on every gpu is same
# make sure arch on every gpu is same
, otherwise an error will occurs
np
.
random
.
seed
(
step_id
*
2
+
1
)
np
.
random
.
seed
(
step_id
*
2
*
(
epoch
+
1
)
+
1
)
try
:
if
use_data_parallel
:
arch_loss
,
_
,
_
,
_
,
arch_logits
=
model
.
_layers
.
loss
(
valid_data
,
arch_loss
,
_
,
_
,
_
,
arch_logits
=
model
.
_layers
.
loss
(
valid_data
,
epoch
)
epoch
)
e
xcept
:
e
lse
:
arch_loss
,
_
,
_
,
_
,
arch_logits
=
model
.
loss
(
valid_data
,
epoch
)
arch_loss
,
_
,
_
,
_
,
arch_logits
=
model
.
loss
(
valid_data
,
epoch
)
if
use_data_parallel
:
if
use_data_parallel
:
...
@@ -101,39 +81,20 @@ def train_one_epoch(model, train_loader, valid_loader, optimizer,
...
@@ -101,39 +81,20 @@ def train_one_epoch(model, train_loader, valid_loader, optimizer,
else
:
else
:
arch_loss
.
backward
()
arch_loss
.
backward
()
arch_optimizer
.
minimize
(
arch_loss
)
arch_optimizer
.
minimize
(
arch_loss
)
arch_optimizer
.
clear_gradients
()
model
.
clear_gradients
()
probs
=
fluid
.
layers
.
softmax
(
arch_logits
[
-
1
])
probs
=
fluid
.
layers
.
softmax
(
arch_logits
[
-
1
])
val_acc
=
fluid
.
layers
.
accuracy
(
input
=
probs
,
label
=
valid_data
[
4
])
val_acc
=
fluid
.
layers
.
accuracy
(
input
=
probs
,
label
=
valid_data
[
4
])
val_accs
.
update
(
val_acc
.
numpy
(),
batch_size
)
val_accs
.
update
(
val_acc
.
numpy
(),
batch_size
)
if
step_id
%
log_freq
==
0
:
if
step_id
%
log_freq
==
0
:
logger
.
info
(
logger
.
info
(
"Train Epoch {}, Step {}, Lr {:.6f} total_loss {:.6f}; ce_loss {:.6f}, kd_loss {:.6f}, train_acc {:.6f}, valid_acc {:.6f};"
.
"Train Epoch {}, Step {}, Lr {:.6f} total_loss {:.6f}; ce_loss {:.6f}, kd_loss {:.6f}, train_acc {:.6f},
search_
valid_acc {:.6f};"
.
format
(
epoch
,
step_id
,
format
(
epoch
,
step_id
,
optimizer
.
current_step_lr
(),
total_losses
.
avg
[
optimizer
.
current_step_lr
(),
total_losses
.
avg
[
0
],
ce_losses
.
avg
[
0
],
kd_losses
.
avg
[
0
],
accs
.
avg
[
0
],
0
],
ce_losses
.
avg
[
0
],
kd_losses
.
avg
[
0
],
accs
.
avg
[
0
],
val_accs
.
avg
[
0
]))
val_accs
.
avg
[
0
]))
step_id
+=
1
def
valid_one_epoch
(
model
,
valid_loader
,
epoch
,
log_freq
):
accs
=
AvgrageMeter
()
ce_losses
=
AvgrageMeter
()
model
.
eval
()
step_id
=
0
for
valid_data
in
valid_loader
():
try
:
loss
,
acc
,
ce_loss
,
_
,
_
=
model
.
_layers
.
loss
(
valid_data
,
epoch
)
except
:
loss
,
acc
,
ce_loss
,
_
,
_
=
model
.
loss
(
valid_data
,
epoch
)
batch_size
=
valid_data
[
0
].
shape
[
0
]
ce_losses
.
update
(
ce_loss
.
numpy
(),
batch_size
)
accs
.
update
(
acc
.
numpy
(),
batch_size
)
step_id
+=
1
step_id
+=
1
return
ce_losses
.
avg
[
0
],
accs
.
avg
[
0
]
def
main
():
def
main
():
...
@@ -145,33 +106,24 @@ def main():
...
@@ -145,33 +106,24 @@ def main():
BERT_BASE_PATH
=
"./data/pretrained_models/uncased_L-12_H-768_A-12"
BERT_BASE_PATH
=
"./data/pretrained_models/uncased_L-12_H-768_A-12"
vocab_path
=
BERT_BASE_PATH
+
"/vocab.txt"
vocab_path
=
BERT_BASE_PATH
+
"/vocab.txt"
data_dir
=
"./data/glue_data/MNLI/"
data_dir
=
"./data/glue_data/MNLI/"
cached_data
=
"./data/glue_data/MNLI/cached_data_"
teacher_model_dir
=
"./data/teacher_model/steps_23000"
teacher_model_dir
=
"./data/teacher_model/steps_23000"
do_lower_case
=
True
do_lower_case
=
True
#num_samples = 392702
num_samples
=
392702
num_samples
=
8016987
# augmented dataset nums
# num_samples = 8016987
max_seq_len
=
128
max_seq_len
=
128
# any modify of vocab/do_lower_case/max_seq_len requires update cached data
batch_size
=
128
batch_size
=
128
hidden_size
=
768
hidden_size
=
768
emb_size
=
768
emb_size
=
768
max_layer
=
8
max_layer
=
8
epoch
=
80
epoch
=
80
log_freq
=
10
log_freq
=
10
device_num
=
fluid
.
dygraph
.
parallel
.
Env
().
nranks
device_num
=
fluid
.
dygraph
.
parallel
.
Env
().
nranks
search
=
True
use_fixed_gumbel
=
False
if
search
:
train_phase
=
"search_train"
use_fixed_gumbel
=
False
val_phase
=
"search_valid"
train_phase
=
"search_train"
step_per_epoch
=
int
(
num_samples
*
0.5
/
((
batch_size
)
*
device_num
))
val_phase
=
"search_valid"
step_per_epoch
=
int
(
num_samples
/
((
batch_size
*
0.5
)
*
device_num
))
else
:
use_fixed_gumbel
=
True
train_phase
=
"train"
val_phase
=
"dev"
step_per_epoch
=
int
(
num_samples
/
(
batch_size
*
device_num
))
with
fluid
.
dygraph
.
guard
(
place
):
with
fluid
.
dygraph
.
guard
(
place
):
model
=
AdaBERTClassifier
(
model
=
AdaBERTClassifier
(
...
@@ -205,69 +157,31 @@ def main():
...
@@ -205,69 +157,31 @@ def main():
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-3
),
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-3
),
parameter_list
=
model
.
arch_parameters
())
parameter_list
=
model
.
arch_parameters
())
if
os
.
path
.
exists
(
cached_data
+
"train"
)
and
os
.
path
.
exists
(
processor
=
MnliProcessor
(
cached_data
+
"valid"
)
+
os
.
path
.
exists
(
cached_data
+
"dev"
):
data_dir
=
data_dir
,
f
=
open
(
cached_data
+
"train"
,
'rb'
)
vocab_path
=
vocab_path
,
logger
.
info
(
"loading preprocessed train data from {}"
.
format
(
max_seq_len
=
max_seq_len
,
cached_data
+
"train"
))
do_lower_case
=
do_lower_case
,
train_data_list
=
pickle
.
load
(
f
)
in_tokens
=
False
)
f
.
close
()
train_reader
=
processor
.
data_generator
(
f
=
open
(
cached_data
+
"valid"
,
'rb'
)
batch_size
=
batch_size
,
logger
.
info
(
"loading preprocessed valid data from {}"
.
format
(
phase
=
train_phase
,
cached_data
+
"valid"
))
epoch
=
1
,
valid_data_list
=
pickle
.
load
(
f
)
dev_count
=
1
,
f
.
close
()
shuffle
=
True
)
valid_reader
=
processor
.
data_generator
(
f
=
open
(
cached_data
+
"dev"
,
'rb'
)
batch_size
=
batch_size
,
logger
.
info
(
"loading preprocessed dev data from {}"
.
format
(
phase
=
val_phase
,
cached_data
+
"dev"
))
epoch
=
1
,
dev_data_list
=
pickle
.
load
(
f
)
dev_count
=
1
,
f
.
close
()
shuffle
=
True
)
else
:
dev_reader
=
processor
.
data_generator
(
processor
=
MnliProcessor
(
batch_size
=
batch_size
,
data_dir
=
data_dir
,
phase
=
"dev"
,
vocab_path
=
vocab_path
,
epoch
=
1
,
max_seq_len
=
max_seq_len
,
dev_count
=
1
,
do_lower_case
=
do_lower_case
,
shuffle
=
False
)
in_tokens
=
False
)
train_reader
=
processor
.
data_generator
(
batch_size
=
batch_size
,
phase
=
train_phase
,
epoch
=
1
,
dev_count
=
1
,
shuffle
=
True
)
valid_reader
=
processor
.
data_generator
(
batch_size
=
batch_size
,
phase
=
val_phase
,
epoch
=
1
,
dev_count
=
1
,
shuffle
=
True
)
dev_reader
=
processor
.
data_generator
(
batch_size
=
batch_size
,
phase
=
"dev"
,
epoch
=
1
,
dev_count
=
1
,
shuffle
=
False
)
train_data_nums
=
processor
.
get_num_examples
(
train_phase
)
valid_data_nums
=
processor
.
get_num_examples
(
val_phase
)
dev_data_nums
=
processor
.
get_num_examples
(
"dev"
)
logger
.
info
(
"Preprocessing train data"
)
train_data_list
=
preprocess_data
(
train_reader
,
train_data_nums
,
"train"
,
cached_data
)
logger
.
info
(
"Preprocessing valid data"
)
valid_data_list
=
preprocess_data
(
valid_reader
,
valid_data_nums
,
"valid"
,
cached_data
)
logger
.
info
(
"Preprocessing dev data"
)
dev_data_list
=
preprocess_data
(
dev_reader
,
dev_data_nums
,
"dev"
,
cached_data
)
train_reader
=
generator_reader
(
train_data_list
)
valid_reader
=
generator_reader
(
valid_data_list
)
dev_reader
=
generator_reader
(
dev_data_list
)
if
use_data_parallel
:
if
use_data_parallel
:
train_reader
=
fluid
.
contrib
.
reader
.
distributed_batch_reader
(
train_reader
=
fluid
.
contrib
.
reader
.
distributed_batch_reader
(
...
@@ -304,12 +218,12 @@ def main():
...
@@ -304,12 +218,12 @@ def main():
arch_optimizer
,
epoch_id
,
use_data_parallel
,
arch_optimizer
,
epoch_id
,
use_data_parallel
,
log_freq
)
log_freq
)
loss
,
acc
=
valid_one_epoch
(
model
,
dev_loader
,
epoch_id
,
log_freq
)
loss
,
acc
=
valid_one_epoch
(
model
,
dev_loader
,
epoch_id
,
log_freq
)
logger
.
info
(
"
Valid set2
, ce_loss {:.6f}; acc: {:.6f};"
.
format
(
loss
,
logger
.
info
(
"
dev set
, ce_loss {:.6f}; acc: {:.6f};"
.
format
(
loss
,
acc
))
acc
))
try
:
if
use_data_parallel
:
print
(
model
.
student
.
_encoder
.
alphas
.
numpy
())
print
(
model
.
student
.
_encoder
.
alphas
.
numpy
())
e
xcept
:
e
lse
:
print
(
model
.
_layers
.
student
.
_encoder
.
alphas
.
numpy
())
print
(
model
.
_layers
.
student
.
_encoder
.
alphas
.
numpy
())
print
(
"="
*
100
)
print
(
"="
*
100
)
...
...
paddleslim/nas/darts/search_space/conv_bert/cls.py
浏览文件 @
f550f78c
...
@@ -72,6 +72,7 @@ class AdaBERTClassifier(Layer):
...
@@ -72,6 +72,7 @@ class AdaBERTClassifier(Layer):
)
)
self
.
teacher
=
BERTClassifier
(
self
.
teacher
=
BERTClassifier
(
num_labels
,
model_path
=
self
.
_teacher_model
)
num_labels
,
model_path
=
self
.
_teacher_model
)
# global setting, will be overwritten when training(about 1% acc loss)
self
.
teacher
.
eval
()
self
.
teacher
.
eval
()
#self.teacher.test(self._data_dir)
#self.teacher.test(self._data_dir)
print
(
print
(
...
@@ -100,24 +101,12 @@ class AdaBERTClassifier(Layer):
...
@@ -100,24 +101,12 @@ class AdaBERTClassifier(Layer):
format
(
t_emb
.
name
,
s_emb
.
name
))
format
(
t_emb
.
name
,
s_emb
.
name
))
def
forward
(
self
,
data_ids
,
epoch
):
def
forward
(
self
,
data_ids
,
epoch
):
src_ids
=
data_ids
[
0
]
return
self
.
student
(
data_ids
,
epoch
)
position_ids
=
data_ids
[
1
]
sentence_ids
=
data_ids
[
2
]
return
self
.
student
(
src_ids
,
position_ids
,
sentence_ids
,
epoch
)
def
arch_parameters
(
self
):
def
arch_parameters
(
self
):
return
self
.
student
.
arch_parameters
()
return
self
.
student
.
arch_parameters
()
def
ce
(
self
,
logits
):
logits
=
np
.
exp
(
logits
-
np
.
max
(
logits
))
logits
=
logits
/
logits
.
sum
(
axis
=
0
)
return
logits
def
loss
(
self
,
data_ids
,
epoch
):
def
loss
(
self
,
data_ids
,
epoch
):
# src_ids = data_ids[0]
# position_ids = data_ids[1]
# sentence_ids = data_ids[2]
# input_mask = data_ids[3]
labels
=
data_ids
[
4
]
labels
=
data_ids
[
4
]
s_logits
=
self
.
student
(
data_ids
,
epoch
)
s_logits
=
self
.
student
(
data_ids
,
epoch
)
...
...
paddleslim/nas/darts/search_space/conv_bert/model/transformer_encoder.py
浏览文件 @
f550f78c
...
@@ -22,14 +22,15 @@ import numpy as np
...
@@ -22,14 +22,15 @@ import numpy as np
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph
import
Embedding
,
LayerNorm
,
Linear
,
Layer
,
Conv2D
,
BatchNorm
,
Pool2D
,
to_variable
from
paddle.fluid.dygraph
import
Embedding
,
LayerNorm
,
Linear
,
Layer
,
Conv2D
,
BatchNorm
,
Pool2D
,
to_variable
from
paddle.fluid.dygraph
import
to_variable
from
paddle.fluid.initializer
import
NormalInitializer
from
paddle.fluid.initializer
import
NormalInitializer
from
paddle.fluid
import
ParamAttr
from
paddle.fluid
import
ParamAttr
from
paddle.fluid.initializer
import
MSRA
,
ConstantInitializer
from
paddle.fluid.initializer
import
MSRA
,
ConstantInitializer
ConvBN_PRIMITIVES
=
[
ConvBN_PRIMITIVES
=
[
'std_conv_bn_3'
,
'std_conv_bn_5'
,
'std_conv_bn_7'
,
'dil_conv_bn_3'
,
'std_conv_bn_3'
,
'std_conv_bn_5'
,
'std_conv_bn_7'
,
'dil_conv_bn_3'
,
'dil_conv_bn_5'
,
'dil_conv_bn_7'
,
'avg_pool_3'
,
'max_pool_3'
,
'none'
,
'dil_conv_bn_5'
,
'dil_conv_bn_7'
,
'avg_pool_3'
,
'max_pool_3'
,
'skip_connect'
'skip_connect'
,
'none'
]
]
...
@@ -69,12 +70,12 @@ class MixedOp(fluid.dygraph.Layer):
...
@@ -69,12 +70,12 @@ class MixedOp(fluid.dygraph.Layer):
self
.
_ops
=
fluid
.
dygraph
.
LayerList
(
ops
)
self
.
_ops
=
fluid
.
dygraph
.
LayerList
(
ops
)
def
forward
(
self
,
x
,
weights
,
index
):
def
forward
(
self
,
x
,
weights
):
# out = fluid.layers.sums(
# out = fluid.layers.sums(
# [weights[i] * op(x) for i, op in enumerate(self._ops)])
# [weights[i] * op(x) for i, op in enumerate(self._ops)])
# return out
# return out
for
i
in
range
(
len
(
self
.
_ops
)):
for
i
in
range
(
len
(
weights
.
numpy
()
)):
if
weights
[
i
].
numpy
()
!=
0
:
if
weights
[
i
].
numpy
()
!=
0
:
return
self
.
_ops
[
i
](
x
)
*
weights
[
i
]
return
self
.
_ops
[
i
](
x
)
*
weights
[
i
]
...
@@ -90,13 +91,13 @@ def gumbel_softmax(logits, epoch, temperature=1.0, hard=True, eps=1e-10):
...
@@ -90,13 +91,13 @@ def gumbel_softmax(logits, epoch, temperature=1.0, hard=True, eps=1e-10):
if
hard
:
if
hard
:
maxes
=
fluid
.
layers
.
reduce_max
(
logits
,
dim
=
1
,
keep_dim
=
True
)
maxes
=
fluid
.
layers
.
reduce_max
(
logits
,
dim
=
1
,
keep_dim
=
True
)
hard
=
fluid
.
layers
.
cast
((
logits
==
maxes
),
logits
.
dtype
)
hard
=
fluid
.
layers
.
cast
((
logits
==
maxes
),
logits
.
dtype
)
index
=
np
.
argmax
(
hard
.
numpy
(),
axis
=
1
)
out
=
hard
-
logits
.
detach
()
+
logits
out
=
hard
-
logits
.
detach
()
+
logits
# tmp.stop_gradient = True
# tmp.stop_gradient = True
# out = tmp + logits
# out = tmp + logits
else
:
else
:
out
=
logits
out
=
logits
return
out
,
index
return
out
class
Zero
(
fluid
.
dygraph
.
Layer
):
class
Zero
(
fluid
.
dygraph
.
Layer
):
...
@@ -174,7 +175,7 @@ class Cell(fluid.dygraph.Layer):
...
@@ -174,7 +175,7 @@ class Cell(fluid.dygraph.Layer):
ops
.
append
(
op
)
ops
.
append
(
op
)
self
.
_ops
=
fluid
.
dygraph
.
LayerList
(
ops
)
self
.
_ops
=
fluid
.
dygraph
.
LayerList
(
ops
)
def
forward
(
self
,
s0
,
s1
,
weights
,
index
):
def
forward
(
self
,
s0
,
s1
,
weights
):
s0
=
self
.
preprocess0
(
s0
)
s0
=
self
.
preprocess0
(
s0
)
s1
=
self
.
preprocess1
(
s1
)
s1
=
self
.
preprocess1
(
s1
)
...
@@ -182,8 +183,7 @@ class Cell(fluid.dygraph.Layer):
...
@@ -182,8 +183,7 @@ class Cell(fluid.dygraph.Layer):
offset
=
0
offset
=
0
for
i
in
range
(
self
.
_steps
):
for
i
in
range
(
self
.
_steps
):
s
=
fluid
.
layers
.
sums
([
s
=
fluid
.
layers
.
sums
([
self
.
_ops
[
offset
+
j
](
h
,
weights
[
offset
+
j
],
self
.
_ops
[
offset
+
j
](
h
,
weights
[
offset
+
j
])
index
[
offset
+
j
])
for
j
,
h
in
enumerate
(
states
)
for
j
,
h
in
enumerate
(
states
)
])
])
offset
+=
len
(
states
)
offset
+=
len
(
states
)
...
@@ -262,15 +262,6 @@ class EncoderLayer(Layer):
...
@@ -262,15 +262,6 @@ class EncoderLayer(Layer):
self
.
pool2d_avg
=
Pool2D
(
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
pool2d_avg
=
Pool2D
(
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
BN
=
BatchNorm
(
num_channels
=
self
.
_n_channel
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1
),
trainable
=
False
),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0
),
trainable
=
False
))
self
.
bns
=
[]
self
.
bns
=
[]
self
.
outs
=
[]
self
.
outs
=
[]
for
i
in
range
(
self
.
_n_layer
):
for
i
in
range
(
self
.
_n_layer
):
...
@@ -292,22 +283,27 @@ class EncoderLayer(Layer):
...
@@ -292,22 +283,27 @@ class EncoderLayer(Layer):
self
.
_bns
=
fluid
.
dygraph
.
LayerList
(
self
.
bns
)
self
.
_bns
=
fluid
.
dygraph
.
LayerList
(
self
.
bns
)
self
.
_outs
=
fluid
.
dygraph
.
LayerList
(
self
.
outs
)
self
.
_outs
=
fluid
.
dygraph
.
LayerList
(
self
.
outs
)
self
.
pooled_fc
=
Linear
(
input_dim
=
self
.
_n_channel
,
output_dim
=
self
.
_hidden_size
,
param_attr
=
fluid
.
ParamAttr
(
name
=
self
.
full_name
()
+
"pooled_fc.w_0"
,
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
scale
=
1.0
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
self
.
full_name
()
+
"pooled_fc.b_0"
),
act
=
"tanh"
)
self
.
use_fixed_gumbel
=
use_fixed_gumbel
self
.
use_fixed_gumbel
=
use_fixed_gumbel
self
.
gumbel_alphas
=
gumbel_softmax
(
self
.
alphas
,
0
)[
0
].
detach
()
#self.gumbel_alphas = gumbel_softmax(self.alphas, 0).detach()
#print("gumbel_alphas: \n", self.gumbel_alphas.numpy())
mrpc_arch
=
[
[
0
,
0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
# std_conv7 0 # node 0
[
0
,
0
,
0
,
0
,
1
,
0
,
0
,
0
,
0
,
0
],
# dil_conv5 1
[
0
,
0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
# std_conv7 0 # node 1
[
0
,
0
,
0
,
0
,
1
,
0
,
0
,
0
,
0
,
0
],
# dil_conv5 1
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
],
# zero 2
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
],
# zero 0 # node2
[
1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
# std_conv3 1
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
],
# zero 2
[
0
,
0
,
0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
]
# dil_conv3 3
]
self
.
gumbel_alphas
=
to_variable
(
np
.
array
(
mrpc_arch
).
astype
(
np
.
float32
))
print
(
"gumbel_alphas:
\n
"
,
self
.
gumbel_alphas
.
numpy
())
def
forward
(
self
,
enc_input_0
,
enc_input_1
,
epoch
,
flops
=
[],
def
forward
(
self
,
enc_input_0
,
enc_input_1
,
epoch
,
flops
=
[],
model_size
=
[]):
model_size
=
[]):
alphas
,
index
=
self
.
gumbel_alphas
if
self
.
use_fixed_gumbel
else
gumbel_softmax
(
alphas
=
self
.
gumbel_alphas
if
self
.
use_fixed_gumbel
else
gumbel_softmax
(
self
.
alphas
,
epoch
)
self
.
alphas
,
epoch
)
s0
=
fluid
.
layers
.
unsqueeze
(
enc_input_0
,
[
1
])
s0
=
fluid
.
layers
.
unsqueeze
(
enc_input_0
,
[
1
])
...
@@ -317,7 +313,7 @@ class EncoderLayer(Layer):
...
@@ -317,7 +313,7 @@ class EncoderLayer(Layer):
enc_outputs
=
[]
enc_outputs
=
[]
for
i
in
range
(
self
.
_n_layer
):
for
i
in
range
(
self
.
_n_layer
):
s0
,
s1
=
s1
,
self
.
_cells
[
i
](
s0
,
s1
,
alphas
,
index
)
s0
,
s1
=
s1
,
self
.
_cells
[
i
](
s0
,
s1
,
alphas
)
# (bs, n_channel, seq_len, 1)
# (bs, n_channel, seq_len, 1)
tmp
=
self
.
_bns
[
i
](
s1
)
tmp
=
self
.
_bns
[
i
](
s1
)
tmp
=
self
.
pool2d_avg
(
tmp
)
tmp
=
self
.
pool2d_avg
(
tmp
)
...
...
paddleslim/teachers/bert/reader/cls.py
浏览文件 @
f550f78c
...
@@ -380,7 +380,7 @@ class MnliProcessor(DataProcessor):
...
@@ -380,7 +380,7 @@ class MnliProcessor(DataProcessor):
def
get_train_examples
(
self
,
data_dir
):
def
get_train_examples
(
self
,
data_dir
):
"""See base class."""
"""See base class."""
return
self
.
_create_examples
(
return
self
.
_create_examples
(
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
"train
_aug
.tsv"
)),
"train"
)
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
"train.tsv"
)),
"train"
)
def
get_dev_examples
(
self
,
data_dir
):
def
get_dev_examples
(
self
,
data_dir
):
"""See base class."""
"""See base class."""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录