Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
f54331a6
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f54331a6
编写于
3月 17, 2023
作者:
C
Chang Xu
提交者:
GitHub
3月 17, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add More Observers (#1690)
上级
72633164
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
362 addition
and
11 deletion
+362
-11
paddleslim/quant/observers/__init__.py
paddleslim/quant/observers/__init__.py
+6
-1
paddleslim/quant/observers/avg.py
paddleslim/quant/observers/avg.py
+105
-0
paddleslim/quant/observers/emd.py
paddleslim/quant/observers/emd.py
+118
-0
paddleslim/quant/observers/mse.py
paddleslim/quant/observers/mse.py
+115
-0
tests/quantization/test_observers.py
tests/quantization/test_observers.py
+18
-10
未找到文件。
paddleslim/quant/observers/__init__.py
浏览文件 @
f54331a6
...
@@ -14,5 +14,10 @@
...
@@ -14,5 +14,10 @@
from
.hist
import
HistObserver
from
.hist
import
HistObserver
from
.kl
import
KLObserver
from
.kl
import
KLObserver
from
.mse
import
MSEObserver
from
.emd
import
EMDObserver
from
.avg
import
AVGObserver
__all__
=
[
"HistObserver"
,
"KLObserver"
]
__all__
=
[
\ No newline at end of file
"HistObserver"
,
"KLObserver"
,
"MSEObserver"
,
"EMDObserver"
,
"AVGObserver"
]
paddleslim/quant/observers/avg.py
0 → 100644
浏览文件 @
f54331a6
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
paddle
from
.uniform
import
UniformObserver
from
paddle.quantization.factory
import
ObserverFactory
class
AVGObserver
(
ObserverFactory
):
r
"""
It collects maximum absolute values of target tensor.
Args:
bit_length(int, optional): Number of bits to represent an quantized integer in binary.
dtype(str, optional): The data type of input tensor.
name (str, optional): This parameter is used by developers to print debugging information. \
For details, please refer to :ref:`api_guide_Name`. Default is None.
Examples:
.. code-block:: python
from paddle.quantization import QuantConfig
from paddle.quantization.quanters import FakeQuanterWithAbsMaxObserver
quanter = FakeQuanterWithAbsMaxObserver(moving_rate=0.99)
q_config = QuantConfig(activation=quanter, weight=quanter)
"""
def
__init__
(
self
,
quant_bits
=
8
):
super
(
AVGObserver
,
self
).
__init__
(
quant_bits
=
quant_bits
)
def
_get_class
(
self
):
return
AVGObserverLayer
class
AVGObserverLayer
(
UniformObserver
):
def
__init__
(
self
,
layer
,
quant_bits
=
8
,
):
super
(
AVGObserverLayer
,
self
).
__init__
(
quant_bits
=
quant_bits
)
self
.
_quant_bits
=
quant_bits
self
.
_avg_list
=
[]
def
forward
(
self
,
inputs
):
""" Calculate forward pass.
"""
self
.
_scale
=
None
self
.
_zero_point
=
None
self
.
_min
=
None
self
.
_max
=
None
self
.
_avg_min
,
self
.
_avg_max
=
self
.
cal_min_max
(
inputs
)
self
.
_avg_list
.
append
(
self
.
_avg_max
)
return
inputs
def
cal_min_max
(
self
,
inputs
):
abs_avg_value
=
paddle
.
abs
(
inputs
.
reshape
((
inputs
.
shape
[
0
],
-
1
)))
abs_avg_value
=
float
(
paddle
.
mean
(
paddle
.
max
(
abs_avg_value
,
axis
=
(
1
))))
return
0
,
abs_avg_value
def
cal_thresholds
(
self
):
""" Compute thresholds for MAX function.
"""
self
.
_min
,
self
.
_max
=
self
.
_avg_min
,
paddle
.
mean
(
paddle
.
to_tensor
(
self
.
_avg_list
))
self
.
_scale
,
self
.
_zero_point
=
self
.
cal_scales_zero_points
()
def
min_value
(
self
)
->
float
:
return
self
.
_min
def
max_value
(
self
)
->
float
:
return
self
.
_max
def
bit_length
(
self
):
""" Return the bit length of quantized data.
"""
return
self
.
_quant_bits
def
quant_axis
(
self
):
""" Return quantization axis.
"""
return
-
1
def
scales
(
self
):
""" Return output scales.
"""
if
self
.
_scale
is
None
:
self
.
cal_thresholds
()
return
self
.
_scale
def
zero_points
(
self
):
""" Return output zero points.
"""
if
self
.
_zero_point
is
None
:
self
.
cal_thresholds
()
return
self
.
_zero_point
paddleslim/quant/observers/emd.py
0 → 100644
浏览文件 @
f54331a6
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
paddle
from
.uniform
import
UniformObserver
from
paddle.quantization.factory
import
ObserverFactory
class
EMDObserver
(
ObserverFactory
):
r
"""
It collects maximum absolute values of target tensor.
Args:
bit_length(int, optional): Number of bits to represent an quantized integer in binary.
dtype(str, optional): The data type of input tensor.
name (str, optional): This parameter is used by developers to print debugging information. \
For details, please refer to :ref:`api_guide_Name`. Default is None.
Examples:
.. code-block:: python
from paddle.quantization import QuantConfig
from paddle.quantization.quanters import FakeQuanterWithAbsMaxObserver
quanter = FakeQuanterWithAbsMaxObserver(moving_rate=0.99)
q_config = QuantConfig(activation=quanter, weight=quanter)
"""
def
__init__
(
self
,
quant_bits
=
8
):
super
(
EMDObserver
,
self
).
__init__
(
quant_bits
=
quant_bits
)
def
_get_class
(
self
):
return
EMDObserverLayer
class
EMDObserverLayer
(
UniformObserver
):
def
__init__
(
self
,
layer
,
quant_bits
=
8
):
super
(
EMDObserverLayer
,
self
).
__init__
(
quant_bits
=
quant_bits
)
self
.
_quant_bits
=
quant_bits
self
.
_calibration_loss
=
float
(
'inf'
)
self
.
qmin
,
self
.
qmax
=
self
.
qmin_qmax
def
forward
(
self
,
inputs
):
""" Calculate forward pass.
"""
self
.
_scale
=
None
self
.
_zero_point
=
None
self
.
_min
=
None
self
.
_max
=
None
self
.
_emd_min
,
self
.
_emd_max
=
self
.
cal_min_max
(
inputs
)
return
inputs
def
cal_min_max
(
self
,
inputs
):
abs_max_value
=
float
(
paddle
.
max
(
paddle
.
flatten
(
inputs
)))
abs_max_value
=
1e-8
if
abs_max_value
==
0.0
else
abs_max_value
s
=
0.3
while
s
<=
1.0
:
scale
=
s
*
abs_max_value
s
+=
0.02
bins
=
2
**
(
self
.
_quant_bits
-
1
)
-
1
quant_var
=
paddle
.
clip
(
paddle
.
round
(
inputs
/
scale
*
self
.
qmax
),
-
self
.
qmax
-
1
,
self
.
qmax
)
quant_dequant_var
=
quant_var
/
self
.
qmax
*
scale
emd_loss
=
paddle
.
abs
(
paddle
.
mean
(
inputs
)
-
paddle
.
mean
(
quant_dequant_var
)
)
+
paddle
.
abs
(
paddle
.
std
(
inputs
)
-
paddle
.
std
(
quant_dequant_var
))
emd_loss
=
float
(
emd_loss
)
if
emd_loss
<=
self
.
_calibration_loss
:
self
.
_calibration_loss
=
emd_loss
return
0
,
scale
def
cal_thresholds
(
self
):
""" Compute thresholds for MAX function.
"""
self
.
_min
,
self
.
_max
=
self
.
_emd_min
,
self
.
_emd_max
self
.
_scale
,
self
.
_zero_point
=
self
.
cal_scales_zero_points
()
def
min_value
(
self
)
->
float
:
return
self
.
_min
def
max_value
(
self
)
->
float
:
return
self
.
_max
def
bit_length
(
self
):
""" Return the bit length of quantized data.
"""
return
self
.
_quant_bits
def
quant_axis
(
self
):
""" Return quantization axis.
"""
return
-
1
def
scales
(
self
):
""" Return output scales.
"""
if
self
.
_scale
is
None
:
self
.
cal_thresholds
()
return
self
.
_scale
def
zero_points
(
self
):
""" Return output zero points.
"""
if
self
.
_zero_point
is
None
:
self
.
cal_thresholds
()
return
self
.
_zero_point
paddleslim/quant/observers/mse.py
0 → 100644
浏览文件 @
f54331a6
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
paddle
from
.uniform
import
UniformObserver
from
paddle.quantization.factory
import
ObserverFactory
class
MSEObserver
(
ObserverFactory
):
r
"""
It collects maximum absolute values of target tensor.
Args:
bit_length(int, optional): Number of bits to represent an quantized integer in binary.
dtype(str, optional): The data type of input tensor.
name (str, optional): This parameter is used by developers to print debugging information. \
For details, please refer to :ref:`api_guide_Name`. Default is None.
Examples:
.. code-block:: python
from paddle.quantization import QuantConfig
from paddle.quantization.quanters import FakeQuanterWithAbsMaxObserver
quanter = FakeQuanterWithAbsMaxObserver(moving_rate=0.99)
q_config = QuantConfig(activation=quanter, weight=quanter)
"""
def
__init__
(
self
,
quant_bits
=
8
):
super
(
MSEObserver
,
self
).
__init__
(
quant_bits
=
quant_bits
)
def
_get_class
(
self
):
return
MSEObserverLayer
class
MSEObserverLayer
(
UniformObserver
):
def
__init__
(
self
,
layer
,
quant_bits
=
8
):
super
(
MSEObserverLayer
,
self
).
__init__
(
quant_bits
=
quant_bits
)
self
.
quant_bits
=
quant_bits
self
.
calibration_loss
=
float
(
'inf'
)
self
.
qmin
,
self
.
qmax
=
self
.
qmin_qmax
def
forward
(
self
,
inputs
):
""" Calculate forward pass.
"""
self
.
_scale
=
None
self
.
_zero_point
=
None
self
.
_min
=
None
self
.
_max
=
None
self
.
_mse_min
,
self
.
_mse_max
=
self
.
cal_min_max
(
inputs
)
return
inputs
def
cal_min_max
(
self
,
inputs
):
abs_max_value
=
float
(
paddle
.
max
(
paddle
.
abs
(
inputs
.
flatten
())))
abs_max_value
=
1e-8
if
abs_max_value
==
0.0
else
abs_max_value
s
=
0.3
while
s
<=
1.0
:
scale
=
s
*
abs_max_value
s
+=
0.02
quant_var
=
paddle
.
clip
(
paddle
.
round
(
inputs
/
scale
*
self
.
qmax
),
-
self
.
qmax
-
1
,
self
.
qmax
)
quant_dequant_var
=
quant_var
/
self
.
qmax
*
scale
mse_loss
=
float
(((
inputs
-
quant_dequant_var
)
**
2
).
mean
())
if
mse_loss
<=
self
.
calibration_loss
:
self
.
calibration_loss
=
mse_loss
return
0
,
scale
def
cal_thresholds
(
self
):
""" Compute thresholds for MAX function.
"""
self
.
_min
,
self
.
_max
=
self
.
_mse_min
,
self
.
_mse_max
self
.
_scale
,
self
.
_zero_point
=
self
.
cal_scales_zero_points
()
def
min_value
(
self
)
->
float
:
return
self
.
_min
def
max_value
(
self
)
->
float
:
return
self
.
_max
def
bit_length
(
self
):
""" Return the bit length of quantized data.
"""
return
self
.
_quant_bits
def
quant_axis
(
self
):
""" Return quantization axis.
"""
return
-
1
def
scales
(
self
):
""" Return output scales.
"""
if
self
.
_scale
is
None
:
self
.
cal_thresholds
()
return
self
.
_scale
def
zero_points
(
self
):
""" Return output zero points.
"""
if
self
.
_zero_point
is
None
:
self
.
cal_thresholds
()
return
self
.
_zero_point
tests/quantization/test_observers.py
浏览文件 @
f54331a6
...
@@ -22,15 +22,19 @@ from paddle.vision.models import resnet18
...
@@ -22,15 +22,19 @@ from paddle.vision.models import resnet18
from
paddle.quantization
import
QuantConfig
from
paddle.quantization
import
QuantConfig
from
paddle.quantization
import
PTQ
from
paddle.quantization
import
PTQ
from
paddleslim.quant.observers
import
HistObserver
,
KLObserver
from
paddleslim.quant.observers
import
HistObserver
,
KLObserver
,
EMDObserver
,
MSEObserver
,
AVGObserver
from
paddleslim.quant.observers.hist
import
PercentHistObserverLayer
from
paddleslim.quant.observers.hist
import
PercentHistObserverLayer
from
paddleslim.quant.observers.kl
import
KLObserverLayer
from
paddleslim.quant.observers.kl
import
KLObserverLayer
from
paddleslim.quant.observers.mse
import
MSEObserverLayer
from
paddleslim.quant.observers.avg
import
AVGObserverLayer
from
paddleslim.quant.observers.emd
import
EMDObserverLayer
from
paddleslim.quant.observers.kl
import
KLObserverLayer
from
paddle.nn.quant.format
import
LinearDequanter
,
LinearQuanter
from
paddle.nn.quant.format
import
LinearDequanter
,
LinearQuanter
class
TestPTQ
WithHist
Observer
(
unittest
.
TestCase
):
class
TestPTQObserver
(
unittest
.
TestCase
):
def
__init__
(
self
,
observer
,
observer_type
,
*
args
,
**
kvargs
):
def
__init__
(
self
,
observer
,
observer_type
,
*
args
,
**
kvargs
):
super
(
TestPTQ
WithHist
Observer
,
self
).
__init__
(
*
args
,
**
kvargs
)
super
(
TestPTQObserver
,
self
).
__init__
(
*
args
,
**
kvargs
)
self
.
observer
=
observer
self
.
observer
=
observer
self
.
observer_type
=
observer_type
self
.
observer_type
=
observer_type
...
@@ -49,8 +53,6 @@ class TestPTQWithHistObserver(unittest.TestCase):
...
@@ -49,8 +53,6 @@ class TestPTQWithHistObserver(unittest.TestCase):
self
.
test_convert
()
self
.
test_convert
()
def
init_case
(
self
):
def
init_case
(
self
):
# observer = HistObserver()
# self.observer_type = PercentHistObserverLayer
self
.
q_config
=
QuantConfig
(
activation
=
None
,
weight
=
None
)
self
.
q_config
=
QuantConfig
(
activation
=
None
,
weight
=
None
)
self
.
q_config
.
add_type_config
(
self
.
q_config
.
add_type_config
(
paddle
.
nn
.
Conv2D
,
activation
=
self
.
observer
,
weight
=
self
.
observer
)
paddle
.
nn
.
Conv2D
,
activation
=
self
.
observer
,
weight
=
self
.
observer
)
...
@@ -96,25 +98,31 @@ class TestPTQWithHistObserver(unittest.TestCase):
...
@@ -96,25 +98,31 @@ class TestPTQWithHistObserver(unittest.TestCase):
observer_suite
=
unittest
.
TestSuite
()
observer_suite
=
unittest
.
TestSuite
()
observer_suite
.
addTest
(
observer_suite
.
addTest
(
TestPTQ
WithHist
Observer
(
TestPTQObserver
(
observer
=
HistObserver
(
sign
=
True
,
symmetric
=
True
),
observer
=
HistObserver
(
sign
=
True
,
symmetric
=
True
),
observer_type
=
PercentHistObserverLayer
))
observer_type
=
PercentHistObserverLayer
))
observer_suite
.
addTest
(
observer_suite
.
addTest
(
TestPTQ
WithHist
Observer
(
TestPTQObserver
(
observer
=
HistObserver
(
sign
=
False
,
symmetric
=
True
),
observer
=
HistObserver
(
sign
=
False
,
symmetric
=
True
),
observer_type
=
PercentHistObserverLayer
))
observer_type
=
PercentHistObserverLayer
))
observer_suite
.
addTest
(
observer_suite
.
addTest
(
TestPTQ
WithHist
Observer
(
TestPTQObserver
(
observer
=
HistObserver
(
sign
=
True
,
symmetric
=
False
),
observer
=
HistObserver
(
sign
=
True
,
symmetric
=
False
),
observer_type
=
PercentHistObserverLayer
))
observer_type
=
PercentHistObserverLayer
))
observer_suite
.
addTest
(
observer_suite
.
addTest
(
TestPTQ
WithHist
Observer
(
TestPTQObserver
(
observer
=
HistObserver
(
sign
=
False
,
symmetric
=
False
),
observer
=
HistObserver
(
sign
=
False
,
symmetric
=
False
),
observer_type
=
PercentHistObserverLayer
))
observer_type
=
PercentHistObserverLayer
))
observer_suite
.
addTest
(
observer_suite
.
addTest
(
TestPTQ
WithHist
Observer
(
TestPTQObserver
(
observer
=
KLObserver
(
bins_count
=
256
),
observer_type
=
KLObserverLayer
))
observer
=
KLObserver
(
bins_count
=
256
),
observer_type
=
KLObserverLayer
))
observer_suite
.
addTest
(
TestPTQObserver
(
observer
=
AVGObserver
(),
observer_type
=
AVGObserverLayer
))
observer_suite
.
addTest
(
TestPTQObserver
(
observer
=
EMDObserver
(),
observer_type
=
EMDObserverLayer
))
observer_suite
.
addTest
(
TestPTQObserver
(
observer
=
MSEObserver
(),
observer_type
=
MSEObserverLayer
))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
runner
=
unittest
.
TextTestRunner
(
verbosity
=
2
)
runner
=
unittest
.
TextTestRunner
(
verbosity
=
2
)
runner
.
run
(
observer_suite
)
runner
.
run
(
observer_suite
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录