未验证 提交 e9b3a650 编写于 作者: C ceci3 提交者: GitHub

Fix params ofa (#558)

* fix when param name is not None
上级 bc104407
......@@ -23,12 +23,14 @@ pd_ver = get_paddle_version()
if pd_ver == 185:
import paddle.fluid.dygraph.nn as nn
from paddle.fluid.dygraph.nn import Conv2D, Conv2DTranspose, Linear, LayerNorm, Embedding
from paddle.fluid import ParamAttr
from .layers import *
from . import layers
Layer = paddle.fluid.dygraph.Layer
else:
import paddle.nn as nn
from paddle.nn import Conv2D, Conv2DTranspose, Linear, LayerNorm, Embedding
from paddle import ParamAttr
from .layers_new import *
from . import layers_new as layers
Layer = paddle.nn.Layer
......@@ -44,6 +46,22 @@ class Convert:
def __init__(self, context):
self.context = context
def _change_name(self, layer, pd_ver, has_bias=True, conv=False):
if conv:
w_attr = layer._param_attr
else:
w_attr = layer._param_attr if pd_ver == 185 else layer._weight_attr
if isinstance(w_attr, ParamAttr):
if w_attr != None and not isinstance(w_attr, bool):
w_attr.name = 'super_' + w_attr.name
if has_bias:
if isinstance(layer._bias_attr, ParamAttr):
if layer._bias_attr != None and not isinstance(layer._bias_attr,
bool):
layer._bias_attr.name = 'super_' + layer._bias_attr.name
def convert(self, network):
# search the first and last weight layer, don't change out channel of the last weight layer
# don't change in channel of the first weight layer
......@@ -88,6 +106,7 @@ class Convert:
'weight_attr', 'data_format', 'padding_mode'
]
self._change_name(layer, pd_ver, conv=True)
new_attr_dict = dict.fromkeys(new_attr_name, None)
new_attr_dict['candidate_config'] = dict()
if pd_ver == 185:
......@@ -104,7 +123,7 @@ class Convert:
fks = '_filter_size' if '_filter_size' in attr_dict.keys(
) else '_kernel_size'
ks = list(attr_dict[fks]) if isinstance(
ks = [attr_dict[fks]] if isinstance(
attr_dict[fks], numbers.Integral) else attr_dict[fks]
if self.kernel_size and int(ks[0]) != 1:
......@@ -214,6 +233,7 @@ class Convert:
else:
new_attr_name += ['weight_attr', 'data_format', 'name']
self._change_name(layer, pd_ver)
new_attr_dict = dict.fromkeys(new_attr_name, None)
if pd_ver == 185:
new_attr_dict['num_channels'] = None
......@@ -237,8 +257,9 @@ class Convert:
del layer, attr_dict
layer = getattr(layers, 'SuperBatchNorm', SuperBatchNorm2D)(
**new_attr_dict)
layer = layers.SuperBatchNorm(
**new_attr_dict
) if pd_ver == 185 else layers.SuperBatchNorm2D(**new_attr_dict)
model[idx] = layer
### assume output_size = None, filter_size != None
......@@ -273,12 +294,14 @@ class Convert:
new_attr_dict['in_channels'] = None
new_attr_dict['out_channels'] = None
new_attr_dict['kernel_size'] = None
self._change_name(layer, pd_ver, conv=True)
self.kernel_size = getattr(self.context, 'kernel_size', None)
# if the kernel_size of conv transpose is 1, don't change it.
fks = '_filter_size' if '_filter_size' in attr_dict.keys(
) else '_kernel_size'
ks = list(attr_dict[fks]) if isinstance(
ks = [attr_dict[fks]] if isinstance(
attr_dict[fks], numbers.Integral) else attr_dict[fks]
if self.kernel_size and int(ks[0]) != 1:
......@@ -381,7 +404,7 @@ class Convert:
attr_dict = layer.__dict__
key = attr_dict['_full_name']
if pd_ver == 185:
new_attr_name = ['param_attr', 'bias_attr', 'act', 'dtype']
new_attr_name = ['act', 'dtype']
else:
new_attr_name = ['weight_attr', 'bias_attr']
in_nc, out_nc = layer._parameters['weight'].shape
......@@ -395,10 +418,8 @@ class Convert:
new_attr_dict['in_features'] = None
new_attr_dict['out_features'] = None
in_key = '_input_dim' if '_input_dim' in attr_dict.keys(
) else '_in_features'
out_key = '_output_dim' if '_output_dim' in attr_dict.keys(
) else '_out_features'
in_key = '_input_dim' if pd_ver == 185 else '_in_features'
out_key = '_output_dim' if pd_ver == 185 else '_out_features'
attr_dict[in_key] = in_nc
attr_dict[out_key] = out_nc
if self.context.expand:
......@@ -461,6 +482,8 @@ class Convert:
]
else:
new_attr_name = ['bias_attr', 'epsilon', 'weight_attr']
self._change_name(layer, pd_ver)
new_attr_dict = dict.fromkeys(new_attr_name, None)
if pd_ver == 185:
new_attr_dict['num_channels'] = None
......@@ -485,8 +508,10 @@ class Convert:
del layer, attr_dict
layer = getattr(layers, 'SuperInstanceNorm2D',
'SuperInstanceNorm')(**new_attr_dict)
layer = layers.SuperInstanceNorm(
**new_attr_dict
) if pd_ver == 185 else layers.SuperInstanceNorm2D(
**new_attr_dict)
model[idx] = layer
elif isinstance(layer, LayerNorm) and (
......@@ -505,6 +530,7 @@ class Convert:
else:
new_attr_name += ['weight_attr']
self._change_name(layer, pd_ver)
new_attr_dict = dict.fromkeys(new_attr_name, None)
new_attr_dict['normalized_shape'] = None
if self.context.expand:
......@@ -540,6 +566,8 @@ class Convert:
'weight_attr', 'name'
]
self._change_name(layer, pd_ver, has_bias=False)
new_attr_dict = dict.fromkeys(new_attr_name, None)
new_attr_dict['candidate_config'] = dict()
bef_size = attr_dict['_size']
......
......@@ -92,8 +92,16 @@ class ModelConv2(nn.Layer):
super(ModelConv2, self).__init__()
with supernet(expand_ratio=(1, 2, 4)) as ofa_super:
models = []
models += [nn.Conv2DTranspose(4, 4, 3)]
models += [nn.BatchNorm2D(4)]
models += [
nn.Conv2DTranspose(
4, 4, 3, weight_attr=paddle.ParamAttr(name='conv1_w'))
]
models += [
nn.BatchNorm2D(
4,
weight_attr=paddle.ParamAttr(name='bn1_w'),
bias_attr=paddle.ParamAttr(name='bn1_b'))
]
models += [ReLU()]
models += [nn.Conv2D(4, 4, 3)]
models += [nn.BatchNorm2D(4)]
......@@ -197,9 +205,25 @@ class ModelLinear2(nn.Layer):
super(ModelLinear2, self).__init__()
with supernet(expand_ratio=None) as ofa_super:
models = []
models += [nn.Embedding(num_embeddings=64, embedding_dim=64)]
models += [nn.Linear(64, 128)]
models += [nn.LayerNorm(128)]
models += [
nn.Embedding(
num_embeddings=64,
embedding_dim=64,
weight_attr=paddle.ParamAttr(name='emb'))
]
models += [
nn.Linear(
64,
128,
weight_attr=paddle.ParamAttr(name='fc1_w'),
bias_attr=paddle.ParamAttr(name='fc1_b'))
]
models += [
nn.LayerNorm(
128,
weight_attr=paddle.ParamAttr(name='ln1_w'),
bias_attr=paddle.ParamAttr(name='ln1_b'))
]
models += [nn.Linear(128, 256)]
models = ofa_super.convert(models)
self.models = paddle.nn.Sequential(*models)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册