Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
dcaa0465
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 1 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
dcaa0465
编写于
5月 12, 2022
作者:
Z
zhouzj
提交者:
GitHub
5月 12, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add demo for auto-compress (#1078)
上级
95665af4
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
471 addition
and
0 deletion
+471
-0
demo/auto_compression/pp-humanseg/README.md
demo/auto_compression/pp-humanseg/README.md
+164
-0
demo/auto_compression/pp-humanseg/configs/humanseg_quant_dis.yaml
...o_compression/pp-humanseg/configs/humanseg_quant_dis.yaml
+56
-0
demo/auto_compression/pp-humanseg/configs/humanseg_sparse_dis.yaml
..._compression/pp-humanseg/configs/humanseg_sparse_dis.yaml
+61
-0
demo/auto_compression/pp-humanseg/run.py
demo/auto_compression/pp-humanseg/run.py
+190
-0
未找到文件。
demo/auto_compression/pp-humanseg/README.md
0 → 100644
浏览文件 @
dcaa0465
# 使用预测模型进行自动压缩示例
本示例将介绍如何使用PaddleSeg中预测模型进行自动压缩训练。
以
[
PP-HumanSeg-Lite
](
https://github.com/PaddlePaddle/PaddleSeg/tree/develop/contrib/PP-HumanSeg#portrait-segmentation
)
模型为例,使用自动压缩接口分别进行了蒸馏稀疏训练和蒸馏量化训练实验,并在SD710上使用单线程测试加速效果,其压缩结果和测速结果如下所示:
| 压缩方式 | Total IoU | 耗时(ms)
<br>
thread=1 | 加速比 |
|:-----:|:----------:|:---------:| :------:|
| Baseline | 0.9287 | 56.363 | - |
| 非结构化稀疏 | 0.9235 | 37.712 | 49.456% |
| 量化 | 0.9284 | 49.656 | 13.506% |
## 自动压缩训练流程
### 1. 准备数据集
参考
[
PaddleSeg数据准备文档
](
https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.5/docs/data/marker/marker_cn.md
)
### 2. 准备待压缩模型
PaddleSeg 是基于飞桨 PaddlePaddle 开发的端到端图像分割开发套件,涵盖了高精度和轻量级等不同方向的大量高质量分割模型。
安装 PaddleSeg 指令如下:
```
pip install paddleseg
```
PaddleSeg 环境依赖详见
[
安装文档
](
https://github.com/PaddlePaddle/PaddleSeg/blob/develop/docs/install_cn.md
)
。
#### 2.1 下载代码
```
git clone https://github.com/PaddlePaddle/PaddleSeg.git
```
#### 2.2 准备预训练模型
在 PaddleSeg 目录下执行如下指令,下载预训练模型。
```
shell
wget https://paddleseg.bj.bcebos.com/dygraph/ppseg/ppseg_lite_portrait_398x224.tar.gz
tar
-xzf
ppseg_lite_portrait_398x224.tar.gz
```
#### 2.3 导出预测模型
在 PaddleSeg 目录下执行如下命令,则预测模型会保存在 inference_model 文件夹。
```
shell
# 设置1张可用的卡
export
CUDA_VISIBLE_DEVICES
=
0
# windows下请执行以下命令
# set CUDA_VISIBLE_DEVICES=0
python export.py
\
--config
configs/pp_humanseg_lite/pp_humanseg_lite_export_398x224.yml
\
--model_path
ppseg_lite_portrait_398x224/model.pdparams
\
--save_dir
inference_model
--with_softmax
```
或直接下载 PP-HumanSeg-Lite 的预测模型:
```
shell
wegt https://paddleseg.bj.bcebos.com/dygraph/ppseg/ppseg_lite_portrait_398x224_with_softmax.tar.gz
tar
-xzf
ppseg_lite_portrait_398x224_with_softmax.tar.gz
```
### 3. 多策略融合压缩
每一个小章节代表一种多策略融合压缩方式。
### 3.1 进行蒸馏稀疏压缩
自动压缩训练需要准备 config 文件、数据集 dataloader 以及测试函数(
``eval_function``
)。
#### 3.1.1 配置config
使用自动压缩进行蒸馏和非结构化稀疏的联合训练,首先要配置 config 文件,包含蒸馏、稀疏和训练三部分参数。
-
蒸馏参数
蒸馏参数主要设置蒸馏节点(
``distill_node_pair``
)和教师网络测预测模型路径。蒸馏节点需包含教师网络节点和对应的学生网络节点,其中教师网络节点名称将在程序中自动添加 “teacher_” 前缀,如下所示。
```
yaml
Distillation
:
distill_lambda
:
1.0
distill_loss
:
l2_loss
distill_node_pair
:
-
teacher_relu_30.tmp_0
-
relu_30.tmp_0
merge_feed
:
true
teacher_model_dir
:
./inference_model
teacher_model_filename
:
model.pdmodel
teacher_params_filename
:
model.pdiparams
```
-
稀疏参数
稀疏参数设置如下所示,其中参数含义详见
[
非结构化稀疏API文档
](
https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/dygraph/pruners/unstructured_pruner.rst
)
。
```
yaml
UnstructurePrune
:
prune_strategy
:
gmp
prune_mode
:
ratio
pruned_ratio
:
0.75
gmp_config
:
stable_iterations
:
0
pruning_iterations
:
4500
tunning_iterations
:
4500
resume_iteration
:
-1
pruning_steps
:
100
initial_ratio
:
0.15
prune_params_type
:
conv1x1_only
local_sparsity
:
True
```
-
训练参数
训练参数主要设置学习率、训练次数(epochs)和优化器等。
```
yaml
TrainConfig
:
epochs
:
14
eval_iter
:
400
learning_rate
:
5.0e-03
optimizer
:
SGD
optim_args
:
weight_decay
:
0.0005
```
#### 3.1.2 准备 dataloader 和测试函数
准备好数据集后,需将训练数据封装成 dict 类型传入自动压缩接口,可参考以下函数进行封装。测试函数用于测试模型精度,需在静态图模式下实现。
```
python
def
reader_wrapper
(
reader
):
def
gen
():
for
i
,
data
in
enumerate
(
reader
()):
imgs
=
np
.
array
(
data
[
0
])
yield
{
"x"
:
imgs
}
return
gen
```
> 注:该dict类型的key值要和保存预测模型时的输入名称保持一致。
#### 3.1.3 开启训练
将训练数据集 dataloader 和测试函数传入接口
``paddleslim.auto_compression.AutoCompression``
,对模型进行非结构化稀疏训练。运行指令如下:
```
shell
python run.py
\
--model_dir
=
'inference_model'
\
--model_filename
=
'inference.pdmodel'
\
--params_filename
=
'./inference.pdiparams'
\
--save_dir
=
'./save_model'
\
--config_path
=
'configs/humanseg_sparse_dis.yaml'
```
### 3.2 进行蒸馏量化压缩
#### 3.2.1 配置config
使用自动压缩进行量化训练,首先要配置config文件,包含蒸馏、量化和训练三部分参数。其中蒸馏和训练参数与稀疏训练类似,下面主要介绍量化参数的设置。
-
量化参数
量化参数主要设置量化比特数和量化op类型,其中量化op包含卷积层(conv2d, depthwise_conv2d)和全连接层(matmul)。以下为只量化卷积层的示例:
```
yaml
Quantization
:
activation_bits
:
8
weight_bits
:
8
is_full_quantize
:
false
not_quant_pattern
:
-
skip_quant
quantize_op_types
:
-
conv2d
-
depthwise_conv2d
```
#### 3.2.2 开启训练
将数据集 dataloader 和测试函数(
``eval_function``
)传入接口
``paddleslim.auto_compression.AutoCompression``
,对模型进行量化训练。运行指令如下:
```
python run.py \
--model_dir='inference_model' \
--model_filename='inference.pdmodel' \
--params_filename='./inference.pdiparams' \
--save_dir='./save_model' \
--config_path='configs/humanseg_quant_dis.yaml'
```
demo/auto_compression/pp-humanseg/configs/humanseg_quant_dis.yaml
0 → 100644
浏览文件 @
dcaa0465
Distillation
:
distill_lambda
:
1.0
distill_loss
:
l2_loss
distill_node_pair
:
-
teacher_reshape2_1.tmp_0
#
-
reshape2_1.tmp_0
-
teacher_reshape2_3.tmp_0
#
-
reshape2_3.tmp_0
-
teacher_reshape2_5.tmp_0
#
-
reshape2_5.tmp_0
-
teacher_reshape2_7.tmp_0
#block1
-
reshape2_7.tmp_0
-
teacher_reshape2_9.tmp_0
#
-
reshape2_9.tmp_0
-
teacher_reshape2_11.tmp_0
#
-
reshape2_11.tmp_0
-
teacher_reshape2_13.tmp_0
#
-
reshape2_13.tmp_0
-
teacher_reshape2_15.tmp_0
#
-
reshape2_15.tmp_0
-
teacher_reshape2_17.tmp_0
#
-
reshape2_17.tmp_0
-
teacher_reshape2_19.tmp_0
#
-
reshape2_19.tmp_0
-
teacher_reshape2_21.tmp_0
#
-
reshape2_21.tmp_0
-
teacher_depthwise_conv2d_14.tmp_0
# block2
-
depthwise_conv2d_14.tmp_0
-
teacher_depthwise_conv2d_15.tmp_0
-
depthwise_conv2d_15.tmp_0
-
teacher_reshape2_23.tmp_0
#block1
-
reshape2_23.tmp_0
-
teacher_relu_30.tmp_0
# final_conv
-
relu_30.tmp_0
-
teacher_bilinear_interp_v2_1.tmp_0
-
bilinear_interp_v2_1.tmp_0
merge_feed
:
true
teacher_model_dir
:
./inference_model
teacher_model_filename
:
inference.pdmodel
teacher_params_filename
:
inference.pdiparams
Quantization
:
activation_bits
:
8
is_full_quantize
:
false
not_quant_pattern
:
-
skip_quant
quantize_op_types
:
-
conv2d
-
depthwise_conv2d
weight_bits
:
8
TrainConfig
:
epochs
:
1
eval_iter
:
400
learning_rate
:
0.0005
optimizer
:
SGD
optim_args
:
weight_decay
:
4.0e-05
\ No newline at end of file
demo/auto_compression/pp-humanseg/configs/humanseg_sparse_dis.yaml
0 → 100644
浏览文件 @
dcaa0465
Distillation
:
distill_lambda
:
1.0
distill_loss
:
l2_loss
distill_node_pair
:
-
teacher_reshape2_1.tmp_0
-
reshape2_1.tmp_0
-
teacher_reshape2_3.tmp_0
-
reshape2_3.tmp_0
-
teacher_reshape2_5.tmp_0
-
reshape2_5.tmp_0
-
teacher_reshape2_7.tmp_0
#block1
-
reshape2_7.tmp_0
-
teacher_reshape2_9.tmp_0
-
reshape2_9.tmp_0
-
teacher_reshape2_11.tmp_0
-
reshape2_11.tmp_0
-
teacher_reshape2_13.tmp_0
-
reshape2_13.tmp_0
-
teacher_reshape2_15.tmp_0
-
reshape2_15.tmp_0
-
teacher_reshape2_17.tmp_0
-
reshape2_17.tmp_0
-
teacher_reshape2_19.tmp_0
-
reshape2_19.tmp_0
-
teacher_reshape2_21.tmp_0
-
reshape2_21.tmp_0
-
teacher_depthwise_conv2d_14.tmp_0
# block2
-
depthwise_conv2d_14.tmp_0
-
teacher_depthwise_conv2d_15.tmp_0
-
depthwise_conv2d_15.tmp_0
-
teacher_reshape2_23.tmp_0
#block1
-
reshape2_23.tmp_0
-
teacher_relu_30.tmp_0
# final_conv
-
relu_30.tmp_0
-
teacher_bilinear_interp_v2_1.tmp_0
-
bilinear_interp_v2_1.tmp_0
merge_feed
:
true
teacher_model_dir
:
./inference_model
teacher_model_filename
:
inference.pdmodel
teacher_params_filename
:
inference.pdiparams
UnstructurePrune
:
prune_strategy
:
gmp
prune_mode
:
ratio
pruned_ratio
:
0.75
gmp_config
:
stable_iterations
:
0
pruning_iterations
:
4500
tunning_iterations
:
4500
resume_iteration
:
-1
pruning_steps
:
100
initial_ratio
:
0.15
prune_params_type
:
conv1x1_only
local_sparsity
:
True
TrainConfig
:
epochs
:
14
eval_iter
:
400
learning_rate
:
5.0e-03
optim_args
:
weight_decay
:
0.0005
optimizer
:
SGD
\ No newline at end of file
demo/auto_compression/pp-humanseg/run.py
0 → 100644
浏览文件 @
dcaa0465
import
os
import
argparse
import
random
import
paddle
import
numpy
as
np
import
paddleseg.transforms
as
T
from
paddleseg.datasets
import
Dataset
from
paddleseg.utils
import
worker_init_fn
from
paddleslim.auto_compression.config_helpers
import
load_config
from
paddleslim.auto_compression
import
AutoCompression
from
paddleseg.core.infer
import
reverse_transform
from
paddleseg.utils
import
metrics
import
paddle.nn.functional
as
F
import
cv2
import
paddle.fluid
as
fluid
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
'Model training'
)
parser
.
add_argument
(
'--model_dir'
,
type
=
str
,
default
=
None
,
help
=
"inference model directory."
)
parser
.
add_argument
(
'--model_filename'
,
type
=
str
,
default
=
None
,
help
=
"inference model filename."
)
parser
.
add_argument
(
'--params_filename'
,
type
=
str
,
default
=
None
,
help
=
"inference params filename."
)
parser
.
add_argument
(
'--save_dir'
,
type
=
str
,
default
=
None
,
help
=
"directory to save compressed model."
)
parser
.
add_argument
(
'--config_path'
,
type
=
str
,
default
=
None
,
help
=
"path of compression strategy config."
)
return
parser
.
parse_args
()
def
eval_function
(
exe
,
compiled_test_program
,
test_feed_names
,
test_fetch_list
):
nranks
=
paddle
.
distributed
.
ParallelEnv
().
local_rank
batch_sampler
=
paddle
.
io
.
DistributedBatchSampler
(
eval_dataset
,
batch_size
=
1
,
shuffle
=
False
,
drop_last
=
False
)
loader
=
paddle
.
io
.
DataLoader
(
eval_dataset
,
batch_sampler
=
batch_sampler
,
num_workers
=
1
,
return_list
=
True
,
)
total_iters
=
len
(
loader
)
intersect_area_all
=
0
pred_area_all
=
0
label_area_all
=
0
print
(
"Start evaluating (total_samples: {}, total_iters: {})..."
.
format
(
len
(
eval_dataset
),
total_iters
))
print
(
"nranks:"
,
nranks
)
for
iter
,
(
image
,
label
)
in
enumerate
(
loader
):
paddle
.
enable_static
()
label
=
np
.
array
(
label
).
astype
(
'int64'
)
ori_shape
=
np
.
array
(
label
).
shape
[
-
2
:]
image
=
np
.
array
(
image
)
logits
=
exe
.
run
(
compiled_test_program
,
feed
=
{
test_feed_names
[
0
]:
image
},
fetch_list
=
test_fetch_list
,
return_numpy
=
True
)
paddle
.
disable_static
()
logit
=
logits
[
0
]
logit
=
reverse_transform
(
paddle
.
to_tensor
(
logit
),
ori_shape
,
eval_dataset
.
transforms
.
transforms
,
mode
=
'bilinear'
)
pred
=
paddle
.
argmax
(
paddle
.
to_tensor
(
logit
),
axis
=
1
,
keepdim
=
True
,
dtype
=
'int32'
)
intersect_area
,
pred_area
,
label_area
=
metrics
.
calculate_area
(
pred
,
paddle
.
to_tensor
(
label
),
eval_dataset
.
num_classes
,
ignore_index
=
eval_dataset
.
ignore_index
)
if
nranks
>
1
:
intersect_area_list
=
[]
pred_area_list
=
[]
label_area_list
=
[]
paddle
.
distributed
.
all_gather
(
intersect_area_list
,
intersect_area
)
paddle
.
distributed
.
all_gather
(
pred_area_list
,
pred_area
)
paddle
.
distributed
.
all_gather
(
label_area_list
,
label_area
)
# Some image has been evaluated and should be eliminated in last iter
if
(
iter
+
1
)
*
nranks
>
len
(
eval_dataset
):
valid
=
len
(
eval_dataset
)
-
iter
*
nranks
intersect_area_list
=
intersect_area_list
[:
valid
]
pred_area_list
=
pred_area_list
[:
valid
]
label_area_list
=
label_area_list
[:
valid
]
for
i
in
range
(
len
(
intersect_area_list
)):
intersect_area_all
=
intersect_area_all
+
intersect_area_list
[
i
]
pred_area_all
=
pred_area_all
+
pred_area_list
[
i
]
label_area_all
=
label_area_all
+
label_area_list
[
i
]
else
:
intersect_area_all
=
intersect_area_all
+
intersect_area
pred_area_all
=
pred_area_all
+
pred_area
label_area_all
=
label_area_all
+
label_area
class_iou
,
miou
=
metrics
.
mean_iou
(
intersect_area_all
,
pred_area_all
,
label_area_all
)
class_acc
,
acc
=
metrics
.
accuracy
(
intersect_area_all
,
pred_area_all
)
kappa
=
metrics
.
kappa
(
intersect_area_all
,
pred_area_all
,
label_area_all
)
class_dice
,
mdice
=
metrics
.
dice
(
intersect_area_all
,
pred_area_all
,
label_area_all
)
infor
=
"[EVAL] #Images: {} mIoU: {:.4f} Acc: {:.4f} Kappa: {:.4f} Dice: {:.4f}"
.
format
(
len
(
eval_dataset
),
miou
,
acc
,
kappa
,
mdice
)
print
(
infor
)
paddle
.
enable_static
()
return
miou
def
reader_wrapper
(
reader
):
def
gen
():
for
i
,
data
in
enumerate
(
reader
()):
imgs
=
np
.
array
(
data
[
0
])
yield
{
"x"
:
imgs
}
return
gen
if
__name__
==
'__main__'
:
args
=
parse_args
()
transforms
=
[
T
.
RandomPaddingCrop
(
crop_size
=
(
512
,
512
)),
T
.
Normalize
()]
train_dataset
=
Dataset
(
transforms
=
transforms
,
dataset_root
=
'dataset_root'
,
# Need to fill in
num_classes
=
2
,
train_path
=
'train_path'
,
# Need to fill in
mode
=
'train'
)
eval_dataset
=
Dataset
(
transforms
=
transforms
,
dataset_root
=
'dataset_root'
,
# Need to fill in
num_classes
=
2
,
train_path
=
'val_path'
,
# Need to fill in
mode
=
'val'
)
batch_sampler
=
paddle
.
io
.
DistributedBatchSampler
(
train_dataset
,
batch_size
=
128
,
shuffle
=
True
,
drop_last
=
True
)
train_loader
=
paddle
.
io
.
DataLoader
(
train_dataset
,
batch_sampler
=
batch_sampler
,
num_workers
=
2
,
return_list
=
True
,
worker_init_fn
=
worker_init_fn
,
)
train_dataloader
=
reader_wrapper
(
train_loader
)
# set auto_compression
compress_config
,
train_config
=
load_config
(
args
.
config_path
)
ac
=
AutoCompression
(
model_dir
=
args
.
model_dir
,
model_filename
=
args
.
model_filename
,
params_filename
=
args
.
param_filename
,
save_dir
=
args
.
save_dir
,
strategy_config
=
compress_config
,
train_config
=
train_config
,
train_dataloader
=
train_dataloader
,
eval_callback
=
eval_function
)
ac
.
compress
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录