Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
dacc4218
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
dacc4218
编写于
12月 17, 2020
作者:
W
whs
提交者:
GitHub
12月 17, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support eval and export model in pruning demo (#541)
上级
6457bba2
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
241 addition
and
0 deletion
+241
-0
demo/dygraph/pruning/eval.py
demo/dygraph/pruning/eval.py
+129
-0
demo/dygraph/pruning/export_model.py
demo/dygraph/pruning/export_model.py
+112
-0
未找到文件。
demo/dygraph/pruning/eval.py
0 → 100644
浏览文件 @
dacc4218
from
__future__
import
division
from
__future__
import
print_function
import
os
import
sys
import
logging
import
paddle
import
argparse
import
functools
import
math
import
time
import
numpy
as
np
sys
.
path
[
0
]
=
os
.
path
.
join
(
os
.
path
.
dirname
(
"__file__"
),
os
.
path
.
pardir
,
os
.
path
.
pardir
)
import
paddleslim
from
paddleslim.common
import
get_logger
from
paddleslim.analysis
import
dygraph_flops
as
flops
import
paddle.vision.models
as
models
from
utility
import
add_arguments
,
print_arguments
import
paddle.vision.transforms
as
T
from
paddle.static
import
InputSpec
as
Input
from
imagenet
import
ImageNetDataset
from
paddle.io
import
BatchSampler
,
DataLoader
,
DistributedBatchSampler
from
paddle.distributed
import
ParallelEnv
_logger
=
get_logger
(
__name__
,
level
=
logging
.
INFO
)
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'batch_size'
,
int
,
64
*
4
,
"Minibatch size."
)
add_arg
(
'model'
,
str
,
"mobilenet_v1"
,
"The target model."
)
add_arg
(
'data'
,
str
,
"imagenet"
,
"Which data to use. 'mnist' or 'imagenet'"
)
add_arg
(
'log_period'
,
int
,
10
,
"Log period in batches."
)
add_arg
(
'test_period'
,
int
,
10
,
"Test period in epoches."
)
add_arg
(
'checkpoint'
,
str
,
None
,
"The path of checkpoint which is used for eval."
)
add_arg
(
'pruned_ratio'
,
float
,
None
,
"The ratios to be pruned."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether to GPUs."
)
# yapf: enable
model_list
=
models
.
__all__
def
get_pruned_params
(
args
,
model
):
params
=
[]
if
args
.
model
==
"mobilenet_v1"
:
skip_vars
=
[
'linear_0.b_0'
,
'conv2d_0.w_0'
]
# skip the first conv2d and last linear
for
sublayer
in
model
.
sublayers
():
for
param
in
sublayer
.
parameters
(
include_sublayers
=
False
):
if
isinstance
(
sublayer
,
paddle
.
nn
.
Conv2D
)
and
sublayer
.
_groups
==
1
and
param
.
name
not
in
skip_vars
:
params
.
append
(
param
.
name
)
elif
args
.
model
==
"mobilenet_v2"
:
for
sublayer
in
model
.
sublayers
():
for
param
in
sublayer
.
parameters
(
include_sublayers
=
False
):
if
isinstance
(
sublayer
,
paddle
.
nn
.
Conv2D
):
params
.
append
(
param
.
name
)
return
params
elif
args
.
model
==
"resnet34"
:
for
sublayer
in
model
.
sublayers
():
for
param
in
sublayer
.
parameters
(
include_sublayers
=
False
):
if
isinstance
(
sublayer
,
paddle
.
nn
.
Conv2D
):
params
.
append
(
param
.
name
)
return
params
else
:
raise
NotImplementedError
(
"Current demo only support for mobilenet_v1, mobilenet_v2, resnet34"
)
return
params
def
eval
(
args
):
paddle
.
set_device
(
'gpu'
if
args
.
use_gpu
else
'cpu'
)
test_reader
=
None
if
args
.
data
==
"cifar10"
:
transform
=
T
.
Compose
([
T
.
Transpose
(),
T
.
Normalize
([
127.5
],
[
127.5
])])
val_dataset
=
paddle
.
vision
.
datasets
.
Cifar10
(
mode
=
"test"
,
backend
=
"cv2"
,
transform
=
transform
)
class_dim
=
10
image_shape
=
[
3
,
224
,
224
]
pretrain
=
False
elif
args
.
data
==
"imagenet"
:
val_dataset
=
ImageNetDataset
(
"data/ILSVRC2012"
,
mode
=
'val'
,
image_size
=
224
,
resize_short_size
=
256
)
class_dim
=
1000
image_shape
=
[
3
,
224
,
224
]
pretrain
=
True
else
:
raise
ValueError
(
"{} is not supported."
.
format
(
args
.
data
))
assert
args
.
model
in
model_list
,
"{} is not in lists: {}"
.
format
(
args
.
model
,
model_list
)
inputs
=
[
Input
([
None
]
+
image_shape
,
'float32'
,
name
=
'image'
)]
labels
=
[
Input
([
None
,
1
],
'int64'
,
name
=
'label'
)]
# model definition
net
=
models
.
__dict__
[
args
.
model
](
pretrained
=
pretrain
,
num_classes
=
class_dim
)
pruner
=
paddleslim
.
dygraph
.
L1NormFilterPruner
(
net
,
[
1
]
+
image_shape
)
params
=
get_pruned_params
(
args
,
net
)
ratios
=
{}
for
param
in
params
:
ratios
[
param
]
=
args
.
pruned_ratio
print
(
f
"ratios:
{
ratios
}
"
)
pruner
.
prune_vars
(
ratios
,
[
0
])
model
=
paddle
.
Model
(
net
,
inputs
,
labels
)
model
.
prepare
(
None
,
paddle
.
nn
.
CrossEntropyLoss
(),
paddle
.
metric
.
Accuracy
(
topk
=
(
1
,
5
)))
model
.
load
(
args
.
checkpoint
)
model
.
evaluate
(
eval_data
=
val_dataset
,
batch_size
=
args
.
batch_size
,
verbose
=
1
,
num_workers
=
8
)
def
main
():
args
=
parser
.
parse_args
()
print_arguments
(
args
)
eval
(
args
)
if
__name__
==
'__main__'
:
main
()
demo/dygraph/pruning/export_model.py
0 → 100644
浏览文件 @
dacc4218
from
__future__
import
division
from
__future__
import
print_function
import
os
import
sys
import
logging
import
paddle
import
argparse
import
functools
import
math
import
time
import
numpy
as
np
sys
.
path
[
0
]
=
os
.
path
.
join
(
os
.
path
.
dirname
(
"__file__"
),
os
.
path
.
pardir
,
os
.
path
.
pardir
)
import
paddleslim
from
paddleslim.common
import
get_logger
import
paddle.vision.models
as
models
from
utility
import
add_arguments
,
print_arguments
from
paddle.jit
import
to_static
_logger
=
get_logger
(
__name__
,
level
=
logging
.
INFO
)
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'batch_size'
,
int
,
64
*
4
,
"Minibatch size."
)
add_arg
(
'model'
,
str
,
"mobilenet_v1"
,
"The target model."
)
add_arg
(
'data'
,
str
,
"imagenet"
,
"Which data to use. 'mnist' or 'imagenet'"
)
add_arg
(
'log_period'
,
int
,
10
,
"Log period in batches."
)
add_arg
(
'test_period'
,
int
,
10
,
"Test period in epoches."
)
add_arg
(
'checkpoint'
,
str
,
None
,
"The path of checkpoint which is used for eval."
)
add_arg
(
'pruned_ratio'
,
float
,
None
,
"The ratios to be pruned."
)
add_arg
(
'output_path'
,
str
,
None
,
"The path of checkpoint which is used for eval."
)
# yapf: enable
model_list
=
models
.
__all__
def
get_pruned_params
(
args
,
model
):
params
=
[]
if
args
.
model
==
"mobilenet_v1"
:
skip_vars
=
[
'linear_0.b_0'
,
'conv2d_0.w_0'
]
# skip the first conv2d and last linear
for
sublayer
in
model
.
sublayers
():
for
param
in
sublayer
.
parameters
(
include_sublayers
=
False
):
if
isinstance
(
sublayer
,
paddle
.
nn
.
Conv2D
)
and
sublayer
.
_groups
==
1
and
param
.
name
not
in
skip_vars
:
params
.
append
(
param
.
name
)
elif
args
.
model
==
"mobilenet_v2"
:
for
sublayer
in
model
.
sublayers
():
for
param
in
sublayer
.
parameters
(
include_sublayers
=
False
):
if
isinstance
(
sublayer
,
paddle
.
nn
.
Conv2D
):
params
.
append
(
param
.
name
)
return
params
elif
args
.
model
==
"resnet34"
:
for
sublayer
in
model
.
sublayers
():
for
param
in
sublayer
.
parameters
(
include_sublayers
=
False
):
if
isinstance
(
sublayer
,
paddle
.
nn
.
Conv2D
):
params
.
append
(
param
.
name
)
return
params
else
:
raise
NotImplementedError
(
"Current demo only support for mobilenet_v1, mobilenet_v2, resnet34"
)
return
params
def
export
(
args
):
paddle
.
set_device
(
'cpu'
)
test_reader
=
None
if
args
.
data
==
"cifar10"
:
class_dim
=
10
image_shape
=
[
3
,
224
,
224
]
elif
args
.
data
==
"imagenet"
:
class_dim
=
1000
image_shape
=
[
3
,
224
,
224
]
else
:
raise
ValueError
(
"{} is not supported."
.
format
(
args
.
data
))
assert
args
.
model
in
model_list
,
"{} is not in lists: {}"
.
format
(
args
.
model
,
model_list
)
# model definition
net
=
models
.
__dict__
[
args
.
model
](
pretrained
=
False
,
num_classes
=
class_dim
)
pruner
=
paddleslim
.
dygraph
.
L1NormFilterPruner
(
net
,
[
1
]
+
image_shape
)
params
=
get_pruned_params
(
args
,
net
)
ratios
=
{}
for
param
in
params
:
ratios
[
param
]
=
args
.
pruned_ratio
print
(
f
"ratios:
{
ratios
}
"
)
pruner
.
prune_vars
(
ratios
,
[
0
])
param_state_dict
=
paddle
.
load
(
args
.
checkpoint
+
".pdparams"
)
net
.
set_dict
(
param_state_dict
)
net
.
eval
()
model
=
to_static
(
net
,
input_spec
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
None
]
+
image_shape
,
dtype
=
'float32'
,
name
=
"image"
)
])
paddle
.
jit
.
save
(
net
,
args
.
output_path
)
def
main
():
args
=
parser
.
parse_args
()
print_arguments
(
args
)
export
(
args
)
if
__name__
==
'__main__'
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录