未验证 提交 da5e4d1f 编写于 作者: C ceci3 提交者: GitHub

add infer file for nlp (#1409)

上级 db03bb47
......@@ -194,6 +194,24 @@ Quantization:
## 5. 预测部署
- Python部署:
首先安装带有TensorRT的[Paddle安装包](https://www.paddlepaddle.org.cn/inference/v2.3/user_guides/download_lib.html#python)
然后使用[infer.py](./infer.py)进行部署:
本示例将以ERNIE 3.0-Medium模型、afqmc数据集的为例,介绍如何利用Paddle—TensorRT测试压缩后模型的精度和速度。
精度测试方法:
```shell
python infer.py --task_name='afqmc' --model_path='./save_ernie3.0_afqmc/' --device='gpu' --use_trt --int8
```
速度测试方法
```shell
python infer.py --task_name='afqmc' --model_path='./save_ernie3.0_afqmc/' --device='gpu' --use_trt --int8 --perf
```
- [PP-MiniLM Paddle Inference Python部署](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/examples/model_compression/pp-minilm)
- [ERNIE-3.0 Paddle Inference Python部署](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/ernie-3.0)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import time
import sys
from functools import partial
import distutils.util
import numpy as np
import paddle
from paddle import inference
from paddle.metric import Metric, Accuracy, Precision, Recall
from paddlenlp.transformers import AutoModelForTokenClassification, AutoTokenizer
from paddlenlp.datasets import load_dataset
from paddlenlp.data import Stack, Tuple, Pad
from paddlenlp.metrics import Mcc, PearsonAndSpearman
METRIC_CLASSES = {
"cola": Mcc,
"sst-2": Accuracy,
"sts-b": PearsonAndSpearman,
"mnli": Accuracy,
"qnli": Accuracy,
"rte": Accuracy,
"afqmc": Accuracy,
"tnews": Accuracy,
"iflytek": Accuracy,
"ocnli": Accuracy,
"cmnli": Accuracy,
"cluewsc2020": Accuracy,
"csl": Accuracy,
}
def convert_example(example, dataset, tokenizer, label_list,
max_seq_length=512):
assert dataset in ['glue', 'clue'
], "This demo only supports for dataset glue or clue"
"""Convert a glue example into necessary features."""
if dataset == 'glue':
# `label_list == None` is for regression task
label_dtype = "int64" if label_list else "float32"
# Get the label
label = example['labels']
label = np.array([label], dtype=label_dtype)
# Convert raw text to feature
example = tokenizer(example['sentence'], max_seq_len=max_seq_length)
return example['input_ids'], example['token_type_ids'], label
else: #if dataset == 'clue':
# `label_list == None` is for regression task
label_dtype = "int64" if label_list else "float32"
# Get the label
example['label'] = np.array(
example["label"], dtype="int64").reshape((-1, 1))
label = example['label']
# Convert raw text to feature
if 'keyword' in example: # CSL
sentence1 = " ".join(example['keyword'])
example = {
'sentence1': sentence1,
'sentence2': example['abst'],
'label': example['label']
}
elif 'target' in example: # wsc
text, query, pronoun, query_idx, pronoun_idx = example[
'text'], example['target']['span1_text'], example['target'][
'span2_text'], example['target']['span1_index'], example[
'target']['span2_index']
text_list = list(text)
assert text[pronoun_idx:(pronoun_idx + len(
pronoun))] == pronoun, "pronoun: {}".format(pronoun)
assert text[query_idx:(query_idx + len(query)
)] == query, "query: {}".format(query)
if pronoun_idx > query_idx:
text_list.insert(query_idx, "_")
text_list.insert(query_idx + len(query) + 1, "_")
text_list.insert(pronoun_idx + 2, "[")
text_list.insert(pronoun_idx + len(pronoun) + 2 + 1, "]")
else:
text_list.insert(pronoun_idx, "[")
text_list.insert(pronoun_idx + len(pronoun) + 1, "]")
text_list.insert(query_idx + 2, "_")
text_list.insert(query_idx + len(query) + 2 + 1, "_")
text = "".join(text_list)
example['sentence'] = text
if tokenizer is None:
return example
if 'sentence' in example:
example = tokenizer(example['sentence'], max_seq_len=max_seq_length)
elif 'sentence1' in example:
example = tokenizer(
example['sentence1'],
text_pair=example['sentence2'],
max_seq_len=max_seq_length)
return example['input_ids'], example['token_type_ids'], label
def parse_args():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task_name",
default='afqmc',
type=str,
help="The name of the task to perform predict, selected in the list: " +
", ".join(METRIC_CLASSES.keys()), )
parser.add_argument(
"--dataset",
default='clue',
type=str,
help="The dataset of model.", )
parser.add_argument(
"--model_path",
default='./quant_models/model',
type=str,
required=True,
help="The path prefix of inference model to be used.", )
parser.add_argument(
"--device",
default="gpu",
choices=["gpu", "cpu", "xpu"],
help="Device selected for inference.", )
parser.add_argument(
"--batch_size",
default=32,
type=int,
help="Batch size for predict.", )
parser.add_argument(
"--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.", )
parser.add_argument(
"--perf_warmup_steps",
default=20,
type=int,
help="Warmup steps for performance test.", )
parser.add_argument(
"--use_trt",
action='store_true',
help="Whether to use inference engin TensorRT.", )
parser.add_argument(
"--perf",
action='store_true',
help="Whether to test performance.", )
parser.add_argument(
"--int8",
action='store_true',
help="Whether to use int8 inference.", )
parser.add_argument(
"--fp16",
action='store_true',
help="Whether to use float16 inference.", )
args = parser.parse_args()
return args
class Predictor(object):
def __init__(self, predictor, input_handles, output_handles):
self.predictor = predictor
self.input_handles = input_handles
self.output_handles = output_handles
@classmethod
def create_predictor(cls, args):
config = paddle.inference.Config(args.model_path + "infer.pdmodel",
args.model_path + "infer.pdiparams")
if args.device == "gpu":
# set GPU configs accordingly
config.enable_use_gpu(100, 0)
cls.device = paddle.set_device("gpu")
elif args.device == "cpu":
# set CPU configs accordingly,
# such as enable_mkldnn, set_cpu_math_library_num_threads
config.disable_gpu()
cls.device = paddle.set_device("cpu")
elif args.device == "xpu":
# set XPU configs accordingly
config.enable_xpu(100)
if args.use_trt:
if args.int8:
config.enable_tensorrt_engine(
workspace_size=1 << 30,
precision_mode=inference.PrecisionType.Int8,
max_batch_size=args.batch_size,
min_subgraph_size=5,
use_static=False,
use_calib_mode=False)
elif args.fp16:
config.enable_tensorrt_engine(
workspace_size=1 << 30,
precision_mode=inference.PrecisionType.Half,
max_batch_size=args.batch_size,
min_subgraph_size=5,
use_static=False,
use_calib_mode=False)
else:
config.enable_tensorrt_engine(
workspace_size=1 << 30,
precision_mode=inference.PrecisionType.Float32,
max_batch_size=args.batch_size,
min_subgraph_size=5,
use_static=False,
use_calib_mode=False)
print("Enable TensorRT is: {}".format(
config.tensorrt_engine_enabled()))
dynamic_shape_file = os.path.join(args.model_path,
'dynamic_shape.txt')
if os.path.exists(dynamic_shape_file):
config.enable_tuned_tensorrt_dynamic_shape(dynamic_shape_file,
True)
print('trt set dynamic shape done!')
else:
config.collect_shape_range_info(dynamic_shape_file)
print(
'Start collect dynamic shape... Please eval again to get real result in TensorRT'
)
sys.exit()
predictor = paddle.inference.create_predictor(config)
input_handles = [
predictor.get_input_handle(name)
for name in predictor.get_input_names()
]
output_handles = [
predictor.get_output_handle(name)
for name in predictor.get_output_names()
]
return cls(predictor, input_handles, output_handles)
def predict_batch(self, data):
for input_field, input_handle in zip(data, self.input_handles):
input_handle.copy_from_cpu(input_field)
self.predictor.run()
output = [
output_handle.copy_to_cpu() for output_handle in self.output_handles
]
return output
def convert_predict_batch(self, args, data, tokenizer, batchify_fn,
label_list):
examples = []
for example in data:
example = convert_example(
example,
args.dataset,
tokenizer,
label_list,
max_seq_length=args.max_seq_length)
examples.append(example)
return examples
def predict(self, dataset, tokenizer, batchify_fn, args):
batches = [
dataset[idx:idx + args.batch_size]
for idx in range(0, len(dataset), args.batch_size)
]
if args.perf:
for i, batch in enumerate(batches):
examples = self.convert_predict_batch(
args, batch, tokenizer, batchify_fn, dataset.label_list)
input_ids, segment_ids, label = batchify_fn(examples)
output = self.predict_batch([input_ids, segment_ids])
if i > args.perf_warmup_steps:
break
start_time = time.time()
for i, batch in enumerate(batches):
examples = self.convert_predict_batch(
args, batch, tokenizer, batchify_fn, dataset.label_list)
input_ids, segment_ids, _ = batchify_fn(examples)
output = self.predict_batch([input_ids, segment_ids])
end_time = time.time()
sequences_num = i * args.batch_size
print("task name: %s, time: %s qps/s, " %
(args.task_name, sequences_num / (end_time - start_time)))
else:
metric = METRIC_CLASSES[args.task_name]()
metric.reset()
for i, batch in enumerate(batches):
examples = self.convert_predict_batch(
args, batch, tokenizer, batchify_fn, dataset.label_list)
input_ids, segment_ids, label = batchify_fn(examples)
output = self.predict_batch([input_ids, segment_ids])
correct = metric.compute(
paddle.to_tensor(output),
paddle.to_tensor(np.array(label).flatten()))
metric.update(correct)
res = metric.accumulate()
print("task name: %s, acc: %s, \n" % (args.task_name, res), end='')
def main():
paddle.seed(42)
args = parse_args()
args.task_name = args.task_name.lower()
predictor = Predictor.create_predictor(args)
dev_ds = load_dataset('clue', args.task_name, splits='dev')
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id), # input
Pad(axis=0, pad_val=tokenizer.pad_token_id), # segment
Stack(dtype="int64" if dev_ds.label_list else "float32") # label
): fn(samples)
outputs = predictor.predict(dev_ds, tokenizer, batchify_fn, args)
if __name__ == "__main__":
main()
......@@ -95,14 +95,18 @@ def parse_args():
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.", )
parser.add_argument(
"--padding",
default='max_length',
"--perf_warmup_steps",
default=20,
type=int,
help="Padding type", )
help="Warmup steps for performance test.", )
parser.add_argument(
"--use_trt",
action='store_true',
help="Whether to use inference engin TensorRT.", )
parser.add_argument(
"--perf",
action='store_true',
help="Whether to test performance.", )
parser.add_argument(
"--int8",
action='store_true',
......@@ -110,7 +114,7 @@ def parse_args():
parser.add_argument(
"--fp16",
action='store_true',
help="Whether to use int8 inference.", )
help="Whether to use float16 inference.", )
args = parser.parse_args()
return args
......@@ -184,7 +188,6 @@ class Predictor(object):
use_static=False,
use_calib_mode=False)
elif args.fp16:
config.enable_tensorrt_engine(
workspace_size=1 << 30,
precision_mode=inference.PrecisionType.Half,
......@@ -202,9 +205,20 @@ class Predictor(object):
use_calib_mode=False)
print("Enable TensorRT is: {}".format(
config.tensorrt_engine_enabled()))
# Set min/max/opt tensor shape of each trt subgraph input according
# to dataset.
# For example, the config of TNEWS data should be 16, 32, 32, 31, 128, 32.
model_dir = os.path.dirname(args.model_path)
dynamic_shape_file = os.path.join(model_dir, 'dynamic_shape.txt')
if os.path.exists(dynamic_shape_file):
config.enable_tuned_tensorrt_dynamic_shape(dynamic_shape_file,
True)
print('trt set dynamic shape done!')
else:
config.collect_shape_range_info(dynamic_shape_file)
print(
'Start collect dynamic shape... Please eval again to get real result in TensorRT'
)
sys.exit()
predictor = paddle.inference.create_predictor(config)
input_handles = [
......@@ -218,37 +232,72 @@ class Predictor(object):
return cls(predictor, input_handles, output_handles)
def predict(self, dataset, collate_fn, batch_size):
def predict(self, dataset, collate_fn, args):
batch_sampler = paddle.io.BatchSampler(
dataset, batch_size=batch_size, shuffle=False)
dataset, batch_size=args.batch_size, shuffle=False)
data_loader = paddle.io.DataLoader(
dataset=dataset,
batch_sampler=batch_sampler,
collate_fn=collate_fn,
num_workers=0,
return_list=True)
outputs = []
end_time = 0
for data in data_loader:
for input_field, input_handle in zip(data, self.input_handles):
input_handle.copy_from_cpu(input_field.numpy() if isinstance(
input_field, paddle.Tensor) else input_field)
for i in range(50):
if args.perf:
for i, data in enumerate(data_loader):
for input_field, input_handle in zip(data, self.input_handles):
input_handle.copy_from_cpu(input_field.numpy(
) if isinstance(input_field, paddle.Tensor) else
input_field)
self.predictor.run()
output = [
output_handle.copy_to_cpu()
for output_handle in self.output_handles
]
if i > args.perf_warmup_steps:
break
time1 = time.time()
repeats = 1000
for i in range(repeats):
for i, data in enumerate(data_loader):
for input_field, input_handle in zip(data, self.input_handles):
input_handle.copy_from_cpu(input_field.numpy(
) if isinstance(input_field, paddle.Tensor) else
input_field)
self.predictor.run()
output = [
output_handle.copy_to_cpu()
for output_handle in self.output_handles
]
sequences_num = i * args.batch_size
print("task name: %s, time: %s qps/s, " %
(args.task_name, sequences_num / (time.time() - time1)))
else:
metric = METRIC_CLASSES[args.task_name]()
metric.reset()
for i, data in enumerate(data_loader):
for input_field, input_handle in zip(data, self.input_handles):
input_handle.copy_from_cpu(input_field.numpy(
) if isinstance(input_field, paddle.Tensor) else
input_field)
self.predictor.run()
output = [
output_handle.copy_to_cpu()
for output_handle in self.output_handles
]
time2 = time.time()
end_time = (time2 - time1) / repeats * 1000
break
print("task name: %s, inference time: %s ms." %
(args.task_name, end_time))
label = data[-1]
correct = metric.compute(
paddle.to_tensor(output[0]),
paddle.to_tensor(np.array(label).flatten()))
print(correct)
metric.update(correct)
res = metric.accumulate()
print("task name: %s, acc: %s, \n" % (args.task_name, res), end='')
def main():
......@@ -268,7 +317,7 @@ def main():
tokenizer=tokenizer,
label_list=dev_ds.label_list,
max_seq_length=args.max_seq_length,
padding=args.padding,
task_name=args.task_name,
return_attention_mask=True)
dev_ds = dev_ds.map(trans_func)
......@@ -278,7 +327,7 @@ def main():
Pad(axis=0, pad_val=tokenizer.pad_token_id), # segment
Stack(dtype="int64" if dev_ds.label_list else "float32") # label
): fn(samples)
predictor.predict(dev_ds, batchify_fn, args.batch_size)
predictor.predict(dev_ds, batchify_fn, args)
if __name__ == "__main__":
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册