Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
d69d9822
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d69d9822
编写于
6月 27, 2022
作者:
C
Chang Xu
提交者:
GitHub
6月 27, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add tinypose demo (#1179)
上级
b22dbf3a
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
696 addition
and
0 deletion
+696
-0
demo/auto_compression/detection/keypoint_utils.py
demo/auto_compression/detection/keypoint_utils.py
+468
-0
demo/auto_compression/detection/run_tinypose.py
demo/auto_compression/detection/run_tinypose.py
+228
-0
未找到文件。
demo/auto_compression/detection/keypoint_utils.py
0 → 100644
浏览文件 @
d69d9822
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
logging
import
os
import
json
from
collections
import
defaultdict
,
OrderedDict
import
numpy
as
np
from
pycocotools.coco
import
COCO
from
pycocotools.cocoeval
import
COCOeval
from
scipy.io
import
loadmat
,
savemat
import
cv2
from
paddleslim.common
import
get_logger
logger
=
get_logger
(
__name__
,
level
=
logging
.
INFO
)
def
get_affine_mat_kernel
(
h
,
w
,
s
,
inv
=
False
):
if
w
<
h
:
w_
=
s
h_
=
int
(
np
.
ceil
((
s
/
w
*
h
)
/
64.
)
*
64
)
scale_w
=
w
scale_h
=
h_
/
w_
*
w
else
:
h_
=
s
w_
=
int
(
np
.
ceil
((
s
/
h
*
w
)
/
64.
)
*
64
)
scale_h
=
h
scale_w
=
w_
/
h_
*
h
center
=
np
.
array
([
np
.
round
(
w
/
2.
),
np
.
round
(
h
/
2.
)])
size_resized
=
(
w_
,
h_
)
trans
=
get_affine_transform
(
center
,
np
.
array
([
scale_w
,
scale_h
]),
0
,
size_resized
,
inv
=
inv
)
return
trans
,
size_resized
def
get_affine_transform
(
center
,
input_size
,
rot
,
output_size
,
shift
=
(
0.
,
0.
),
inv
=
False
):
"""Get the affine transform matrix, given the center/scale/rot/output_size.
Args:
center (np.ndarray[2, ]): Center of the bounding box (x, y).
input_size (np.ndarray[2, ]): Size of input feature (width, height).
rot (float): Rotation angle (degree).
output_size (np.ndarray[2, ]): Size of the destination heatmaps.
shift (0-100%): Shift translation ratio wrt the width/height.
Default (0., 0.).
inv (bool): Option to inverse the affine transform direction.
(inv=False: src->dst or inv=True: dst->src)
Returns:
np.ndarray: The transform matrix.
"""
assert
len
(
center
)
==
2
assert
len
(
output_size
)
==
2
assert
len
(
shift
)
==
2
if
not
isinstance
(
input_size
,
(
np
.
ndarray
,
list
)):
input_size
=
np
.
array
([
input_size
,
input_size
],
dtype
=
np
.
float32
)
scale_tmp
=
input_size
shift
=
np
.
array
(
shift
)
src_w
=
scale_tmp
[
0
]
dst_w
=
output_size
[
0
]
dst_h
=
output_size
[
1
]
rot_rad
=
np
.
pi
*
rot
/
180
src_dir
=
rotate_point
([
0.
,
src_w
*
-
0.5
],
rot_rad
)
dst_dir
=
np
.
array
([
0.
,
dst_w
*
-
0.5
])
src
=
np
.
zeros
((
3
,
2
),
dtype
=
np
.
float32
)
src
[
0
,
:]
=
center
+
scale_tmp
*
shift
src
[
1
,
:]
=
center
+
src_dir
+
scale_tmp
*
shift
src
[
2
,
:]
=
_get_3rd_point
(
src
[
0
,
:],
src
[
1
,
:])
dst
=
np
.
zeros
((
3
,
2
),
dtype
=
np
.
float32
)
dst
[
0
,
:]
=
[
dst_w
*
0.5
,
dst_h
*
0.5
]
dst
[
1
,
:]
=
np
.
array
([
dst_w
*
0.5
,
dst_h
*
0.5
])
+
dst_dir
dst
[
2
,
:]
=
_get_3rd_point
(
dst
[
0
,
:],
dst
[
1
,
:])
if
inv
:
trans
=
cv2
.
getAffineTransform
(
np
.
float32
(
dst
),
np
.
float32
(
src
))
else
:
trans
=
cv2
.
getAffineTransform
(
np
.
float32
(
src
),
np
.
float32
(
dst
))
return
trans
def
get_warp_matrix
(
theta
,
size_input
,
size_dst
,
size_target
):
"""This code is based on
https://github.com/open-mmlab/mmpose/blob/master/mmpose/core/post_processing/post_transforms.py
Calculate the transformation matrix under the constraint of unbiased.
Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
Data Processing for Human Pose Estimation (CVPR 2020).
Args:
theta (float): Rotation angle in degrees.
size_input (np.ndarray): Size of input image [w, h].
size_dst (np.ndarray): Size of output image [w, h].
size_target (np.ndarray): Size of ROI in input plane [w, h].
Returns:
matrix (np.ndarray): A matrix for transformation.
"""
theta
=
np
.
deg2rad
(
theta
)
matrix
=
np
.
zeros
((
2
,
3
),
dtype
=
np
.
float32
)
scale_x
=
size_dst
[
0
]
/
size_target
[
0
]
scale_y
=
size_dst
[
1
]
/
size_target
[
1
]
matrix
[
0
,
0
]
=
np
.
cos
(
theta
)
*
scale_x
matrix
[
0
,
1
]
=
-
np
.
sin
(
theta
)
*
scale_x
matrix
[
0
,
2
]
=
scale_x
*
(
-
0.5
*
size_input
[
0
]
*
np
.
cos
(
theta
)
+
0.5
*
size_input
[
1
]
*
np
.
sin
(
theta
)
+
0.5
*
size_target
[
0
])
matrix
[
1
,
0
]
=
np
.
sin
(
theta
)
*
scale_y
matrix
[
1
,
1
]
=
np
.
cos
(
theta
)
*
scale_y
matrix
[
1
,
2
]
=
scale_y
*
(
-
0.5
*
size_input
[
0
]
*
np
.
sin
(
theta
)
-
0.5
*
size_input
[
1
]
*
np
.
cos
(
theta
)
+
0.5
*
size_target
[
1
])
return
matrix
def
_get_3rd_point
(
a
,
b
):
"""To calculate the affine matrix, three pairs of points are required. This
function is used to get the 3rd point, given 2D points a & b.
The 3rd point is defined by rotating vector `a - b` by 90 degrees
anticlockwise, using b as the rotation center.
Args:
a (np.ndarray): point(x,y)
b (np.ndarray): point(x,y)
Returns:
np.ndarray: The 3rd point.
"""
assert
len
(
a
)
==
2
,
'input of _get_3rd_point should be point with length of 2'
assert
len
(
b
)
==
2
,
'input of _get_3rd_point should be point with length of 2'
direction
=
a
-
b
third_pt
=
b
+
np
.
array
([
-
direction
[
1
],
direction
[
0
]],
dtype
=
np
.
float32
)
return
third_pt
def
rotate_point
(
pt
,
angle_rad
):
"""Rotate a point by an angle.
Args:
pt (list[float]): 2 dimensional point to be rotated
angle_rad (float): rotation angle by radian
Returns:
list[float]: Rotated point.
"""
assert
len
(
pt
)
==
2
sn
,
cs
=
np
.
sin
(
angle_rad
),
np
.
cos
(
angle_rad
)
new_x
=
pt
[
0
]
*
cs
-
pt
[
1
]
*
sn
new_y
=
pt
[
0
]
*
sn
+
pt
[
1
]
*
cs
rotated_pt
=
[
new_x
,
new_y
]
return
rotated_pt
def
transpred
(
kpts
,
h
,
w
,
s
):
trans
,
_
=
get_affine_mat_kernel
(
h
,
w
,
s
,
inv
=
True
)
return
warp_affine_joints
(
kpts
[...,
:
2
].
copy
(),
trans
)
def
warp_affine_joints
(
joints
,
mat
):
"""Apply affine transformation defined by the transform matrix on the
joints.
Args:
joints (np.ndarray[..., 2]): Origin coordinate of joints.
mat (np.ndarray[3, 2]): The affine matrix.
Returns:
matrix (np.ndarray[..., 2]): Result coordinate of joints.
"""
joints
=
np
.
array
(
joints
)
shape
=
joints
.
shape
joints
=
joints
.
reshape
(
-
1
,
2
)
return
np
.
dot
(
np
.
concatenate
(
(
joints
,
joints
[:,
0
:
1
]
*
0
+
1
),
axis
=
1
),
mat
.
T
).
reshape
(
shape
)
def
affine_transform
(
pt
,
t
):
new_pt
=
np
.
array
([
pt
[
0
],
pt
[
1
],
1.
]).
T
new_pt
=
np
.
dot
(
t
,
new_pt
)
return
new_pt
[:
2
]
def
transform_preds
(
coords
,
center
,
scale
,
output_size
):
target_coords
=
np
.
zeros
(
coords
.
shape
)
trans
=
get_affine_transform
(
center
,
scale
*
200
,
0
,
output_size
,
inv
=
1
)
for
p
in
range
(
coords
.
shape
[
0
]):
target_coords
[
p
,
0
:
2
]
=
affine_transform
(
coords
[
p
,
0
:
2
],
trans
)
return
target_coords
def
oks_iou
(
g
,
d
,
a_g
,
a_d
,
sigmas
=
None
,
in_vis_thre
=
None
):
if
not
isinstance
(
sigmas
,
np
.
ndarray
):
sigmas
=
np
.
array
([
.
26
,
.
25
,
.
25
,
.
35
,
.
35
,
.
79
,
.
79
,
.
72
,
.
72
,
.
62
,
.
62
,
1.07
,
1.07
,
.
87
,
.
87
,
.
89
,
.
89
])
/
10.0
vars
=
(
sigmas
*
2
)
**
2
xg
=
g
[
0
::
3
]
yg
=
g
[
1
::
3
]
vg
=
g
[
2
::
3
]
ious
=
np
.
zeros
((
d
.
shape
[
0
]))
for
n_d
in
range
(
0
,
d
.
shape
[
0
]):
xd
=
d
[
n_d
,
0
::
3
]
yd
=
d
[
n_d
,
1
::
3
]
vd
=
d
[
n_d
,
2
::
3
]
dx
=
xd
-
xg
dy
=
yd
-
yg
e
=
(
dx
**
2
+
dy
**
2
)
/
vars
/
((
a_g
+
a_d
[
n_d
])
/
2
+
np
.
spacing
(
1
))
/
2
if
in_vis_thre
is
not
None
:
ind
=
list
(
vg
>
in_vis_thre
)
and
list
(
vd
>
in_vis_thre
)
e
=
e
[
ind
]
ious
[
n_d
]
=
np
.
sum
(
np
.
exp
(
-
e
))
/
e
.
shape
[
0
]
if
e
.
shape
[
0
]
!=
0
else
0.0
return
ious
def
oks_nms
(
kpts_db
,
thresh
,
sigmas
=
None
,
in_vis_thre
=
None
):
"""greedily select boxes with high confidence and overlap with current maximum <= thresh
rule out overlap >= thresh
Args:
kpts_db (list): The predicted keypoints within the image
thresh (float): The threshold to select the boxes
sigmas (np.array): The variance to calculate the oks iou
Default: None
in_vis_thre (float): The threshold to select the high confidence boxes
Default: None
Return:
keep (list): indexes to keep
"""
if
len
(
kpts_db
)
==
0
:
return
[]
scores
=
np
.
array
([
kpts_db
[
i
][
'score'
]
for
i
in
range
(
len
(
kpts_db
))])
kpts
=
np
.
array
(
[
kpts_db
[
i
][
'keypoints'
].
flatten
()
for
i
in
range
(
len
(
kpts_db
))])
areas
=
np
.
array
([
kpts_db
[
i
][
'area'
]
for
i
in
range
(
len
(
kpts_db
))])
order
=
scores
.
argsort
()[::
-
1
]
keep
=
[]
while
order
.
size
>
0
:
i
=
order
[
0
]
keep
.
append
(
i
)
oks_ovr
=
oks_iou
(
kpts
[
i
],
kpts
[
order
[
1
:]],
areas
[
i
],
areas
[
order
[
1
:]],
sigmas
,
in_vis_thre
)
inds
=
np
.
where
(
oks_ovr
<=
thresh
)[
0
]
order
=
order
[
inds
+
1
]
return
keep
def
rescore
(
overlap
,
scores
,
thresh
,
type
=
'gaussian'
):
assert
overlap
.
shape
[
0
]
==
scores
.
shape
[
0
]
if
type
==
'linear'
:
inds
=
np
.
where
(
overlap
>=
thresh
)[
0
]
scores
[
inds
]
=
scores
[
inds
]
*
(
1
-
overlap
[
inds
])
else
:
scores
=
scores
*
np
.
exp
(
-
overlap
**
2
/
thresh
)
return
scores
def
soft_oks_nms
(
kpts_db
,
thresh
,
sigmas
=
None
,
in_vis_thre
=
None
):
"""greedily select boxes with high confidence and overlap with current maximum <= thresh
rule out overlap >= thresh
Args:
kpts_db (list): The predicted keypoints within the image
thresh (float): The threshold to select the boxes
sigmas (np.array): The variance to calculate the oks iou
Default: None
in_vis_thre (float): The threshold to select the high confidence boxes
Default: None
Return:
keep (list): indexes to keep
"""
if
len
(
kpts_db
)
==
0
:
return
[]
scores
=
np
.
array
([
kpts_db
[
i
][
'score'
]
for
i
in
range
(
len
(
kpts_db
))])
kpts
=
np
.
array
(
[
kpts_db
[
i
][
'keypoints'
].
flatten
()
for
i
in
range
(
len
(
kpts_db
))])
areas
=
np
.
array
([
kpts_db
[
i
][
'area'
]
for
i
in
range
(
len
(
kpts_db
))])
order
=
scores
.
argsort
()[::
-
1
]
scores
=
scores
[
order
]
# max_dets = order.size
max_dets
=
20
keep
=
np
.
zeros
(
max_dets
,
dtype
=
np
.
intp
)
keep_cnt
=
0
while
order
.
size
>
0
and
keep_cnt
<
max_dets
:
i
=
order
[
0
]
oks_ovr
=
oks_iou
(
kpts
[
i
],
kpts
[
order
[
1
:]],
areas
[
i
],
areas
[
order
[
1
:]],
sigmas
,
in_vis_thre
)
order
=
order
[
1
:]
scores
=
rescore
(
oks_ovr
,
scores
[
1
:],
thresh
)
tmp
=
scores
.
argsort
()[::
-
1
]
order
=
order
[
tmp
]
scores
=
scores
[
tmp
]
keep
[
keep_cnt
]
=
i
keep_cnt
+=
1
keep
=
keep
[:
keep_cnt
]
return
keep
class
HRNetPostProcess
(
object
):
def
__init__
(
self
,
use_dark
=
True
):
self
.
use_dark
=
use_dark
def
get_max_preds
(
self
,
heatmaps
):
'''get predictions from score maps
Args:
heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
Returns:
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints
'''
assert
isinstance
(
heatmaps
,
np
.
ndarray
),
'heatmaps should be numpy.ndarray'
assert
heatmaps
.
ndim
==
4
,
'batch_images should be 4-ndim'
batch_size
=
heatmaps
.
shape
[
0
]
num_joints
=
heatmaps
.
shape
[
1
]
width
=
heatmaps
.
shape
[
3
]
heatmaps_reshaped
=
heatmaps
.
reshape
((
batch_size
,
num_joints
,
-
1
))
idx
=
np
.
argmax
(
heatmaps_reshaped
,
2
)
maxvals
=
np
.
amax
(
heatmaps_reshaped
,
2
)
maxvals
=
maxvals
.
reshape
((
batch_size
,
num_joints
,
1
))
idx
=
idx
.
reshape
((
batch_size
,
num_joints
,
1
))
preds
=
np
.
tile
(
idx
,
(
1
,
1
,
2
)).
astype
(
np
.
float32
)
preds
[:,
:,
0
]
=
(
preds
[:,
:,
0
])
%
width
preds
[:,
:,
1
]
=
np
.
floor
((
preds
[:,
:,
1
])
/
width
)
pred_mask
=
np
.
tile
(
np
.
greater
(
maxvals
,
0.0
),
(
1
,
1
,
2
))
pred_mask
=
pred_mask
.
astype
(
np
.
float32
)
preds
*=
pred_mask
return
preds
,
maxvals
def
gaussian_blur
(
self
,
heatmap
,
kernel
):
border
=
(
kernel
-
1
)
//
2
batch_size
=
heatmap
.
shape
[
0
]
num_joints
=
heatmap
.
shape
[
1
]
height
=
heatmap
.
shape
[
2
]
width
=
heatmap
.
shape
[
3
]
for
i
in
range
(
batch_size
):
for
j
in
range
(
num_joints
):
origin_max
=
np
.
max
(
heatmap
[
i
,
j
])
dr
=
np
.
zeros
((
height
+
2
*
border
,
width
+
2
*
border
))
dr
[
border
:
-
border
,
border
:
-
border
]
=
heatmap
[
i
,
j
].
copy
()
dr
=
cv2
.
GaussianBlur
(
dr
,
(
kernel
,
kernel
),
0
)
heatmap
[
i
,
j
]
=
dr
[
border
:
-
border
,
border
:
-
border
].
copy
()
heatmap
[
i
,
j
]
*=
origin_max
/
np
.
max
(
heatmap
[
i
,
j
])
return
heatmap
def
dark_parse
(
self
,
hm
,
coord
):
heatmap_height
=
hm
.
shape
[
0
]
heatmap_width
=
hm
.
shape
[
1
]
px
=
int
(
coord
[
0
])
py
=
int
(
coord
[
1
])
if
1
<
px
<
heatmap_width
-
2
and
1
<
py
<
heatmap_height
-
2
:
dx
=
0.5
*
(
hm
[
py
][
px
+
1
]
-
hm
[
py
][
px
-
1
])
dy
=
0.5
*
(
hm
[
py
+
1
][
px
]
-
hm
[
py
-
1
][
px
])
dxx
=
0.25
*
(
hm
[
py
][
px
+
2
]
-
2
*
hm
[
py
][
px
]
+
hm
[
py
][
px
-
2
])
dxy
=
0.25
*
(
hm
[
py
+
1
][
px
+
1
]
-
hm
[
py
-
1
][
px
+
1
]
-
hm
[
py
+
1
][
px
-
1
]
\
+
hm
[
py
-
1
][
px
-
1
])
dyy
=
0.25
*
(
hm
[
py
+
2
*
1
][
px
]
-
2
*
hm
[
py
][
px
]
+
hm
[
py
-
2
*
1
][
px
])
derivative
=
np
.
matrix
([[
dx
],
[
dy
]])
hessian
=
np
.
matrix
([[
dxx
,
dxy
],
[
dxy
,
dyy
]])
if
dxx
*
dyy
-
dxy
**
2
!=
0
:
hessianinv
=
hessian
.
I
offset
=
-
hessianinv
*
derivative
offset
=
np
.
squeeze
(
np
.
array
(
offset
.
T
),
axis
=
0
)
coord
+=
offset
return
coord
def
dark_postprocess
(
self
,
hm
,
coords
,
kernelsize
):
'''DARK postpocessing, Zhang et al. Distribution-Aware Coordinate
Representation for Human Pose Estimation (CVPR 2020).
'''
hm
=
self
.
gaussian_blur
(
hm
,
kernelsize
)
hm
=
np
.
maximum
(
hm
,
1e-10
)
hm
=
np
.
log
(
hm
)
for
n
in
range
(
coords
.
shape
[
0
]):
for
p
in
range
(
coords
.
shape
[
1
]):
coords
[
n
,
p
]
=
self
.
dark_parse
(
hm
[
n
][
p
],
coords
[
n
][
p
])
return
coords
def
get_final_preds
(
self
,
heatmaps
,
center
,
scale
,
kernelsize
=
3
):
"""the highest heatvalue location with a quarter offset in the
direction from the highest response to the second highest response.
Args:
heatmaps (numpy.ndarray): The predicted heatmaps
center (numpy.ndarray): The boxes center
scale (numpy.ndarray): The scale factor
Returns:
preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints
"""
coords
,
maxvals
=
self
.
get_max_preds
(
heatmaps
)
heatmap_height
=
heatmaps
.
shape
[
2
]
heatmap_width
=
heatmaps
.
shape
[
3
]
if
self
.
use_dark
:
coords
=
self
.
dark_postprocess
(
heatmaps
,
coords
,
kernelsize
)
else
:
for
n
in
range
(
coords
.
shape
[
0
]):
for
p
in
range
(
coords
.
shape
[
1
]):
hm
=
heatmaps
[
n
][
p
]
px
=
int
(
math
.
floor
(
coords
[
n
][
p
][
0
]
+
0.5
))
py
=
int
(
math
.
floor
(
coords
[
n
][
p
][
1
]
+
0.5
))
if
1
<
px
<
heatmap_width
-
1
and
1
<
py
<
heatmap_height
-
1
:
diff
=
np
.
array
([
hm
[
py
][
px
+
1
]
-
hm
[
py
][
px
-
1
],
hm
[
py
+
1
][
px
]
-
hm
[
py
-
1
][
px
]
])
coords
[
n
][
p
]
+=
np
.
sign
(
diff
)
*
.
25
preds
=
coords
.
copy
()
# Transform back
for
i
in
range
(
coords
.
shape
[
0
]):
preds
[
i
]
=
transform_preds
(
coords
[
i
],
center
[
i
],
scale
[
i
],
[
heatmap_width
,
heatmap_height
])
return
preds
,
maxvals
def
__call__
(
self
,
output
,
center
,
scale
):
preds
,
maxvals
=
self
.
get_final_preds
(
np
.
array
(
output
),
center
,
scale
)
outputs
=
[[
np
.
concatenate
(
(
preds
,
maxvals
),
axis
=-
1
),
np
.
mean
(
maxvals
,
axis
=
1
)
]]
return
outputs
demo/auto_compression/detection/run_tinypose.py
0 → 100644
浏览文件 @
d69d9822
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
import
numpy
as
np
import
argparse
import
paddle
import
copy
import
cv2
from
ppdet.core.workspace
import
load_config
,
merge_config
from
ppdet.core.workspace
import
create
from
ppdet.metrics
import
KeyPointTopDownCOCOEval
from
paddleslim.auto_compression.config_helpers
import
load_config
as
load_slim_config
from
paddleslim.auto_compression
import
AutoCompression
from
paddleslim.quant
import
quant_post_static
from
keypoint_utils
import
HRNetPostProcess
,
transform_preds
def
argsparser
():
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
'--config_path'
,
type
=
str
,
default
=
None
,
help
=
"path of compression strategy config."
,
required
=
True
)
parser
.
add_argument
(
'--save_dir'
,
type
=
str
,
default
=
'output'
,
help
=
"directory to save compressed model."
)
parser
.
add_argument
(
'--devices'
,
type
=
str
,
default
=
'gpu'
,
help
=
"which device used to compress."
)
parser
.
add_argument
(
'--eval'
,
type
=
bool
,
default
=
False
,
help
=
"whether to run evaluation."
)
parser
.
add_argument
(
'--quant'
,
type
=
bool
,
default
=
False
,
help
=
"whether to run evaluation."
)
return
parser
def
print_arguments
(
args
):
print
(
'----------- Running Arguments -----------'
)
for
arg
,
value
in
sorted
(
vars
(
args
).
items
()):
print
(
'%s: %s'
%
(
arg
,
value
))
print
(
'------------------------------------------'
)
def
reader_wrapper
(
reader
,
input_list
):
def
gen
():
for
data
in
reader
:
in_dict
=
{}
for
input_name
in
input_list
:
in_dict
[
input_name
]
=
data
[
input_name
]
yield
in_dict
return
gen
def
flip_back
(
output_flipped
,
matched_parts
):
assert
output_flipped
.
ndim
==
4
,
\
'output_flipped should be [batch_size, num_joints, height, width]'
output_flipped
=
output_flipped
[:,
:,
:,
::
-
1
]
for
pair
in
matched_parts
:
tmp
=
output_flipped
[:,
pair
[
0
],
:,
:].
copy
()
output_flipped
[:,
pair
[
0
],
:,
:]
=
output_flipped
[:,
pair
[
1
],
:,
:]
output_flipped
[:,
pair
[
1
],
:,
:]
=
tmp
return
output_flipped
def
eval
(
config
):
place
=
paddle
.
CUDAPlace
(
0
)
if
FLAGS
.
devices
==
'gpu'
else
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
val_program
,
feed_target_names
,
fetch_targets
=
paddle
.
fluid
.
io
.
load_inference_model
(
config
[
"model_dir"
],
exe
,
model_filename
=
config
[
"model_filename"
],
params_filename
=
config
[
"params_filename"
],
)
dataset
.
check_or_download_dataset
()
anno_file
=
dataset
.
get_anno
()
metric
=
KeyPointTopDownCOCOEval
(
anno_file
,
len
(
dataset
),
17
,
'output_eval'
)
post_process
=
HRNetPostProcess
()
for
batch_id
,
data
in
enumerate
(
val_loader
):
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
data_input
=
{}
for
k
,
v
in
data
.
items
():
if
k
in
config
[
'input_list'
]:
data_input
[
k
]
=
np
.
array
(
v
)
outs
=
exe
.
run
(
val_program
,
feed
=
data_input
,
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
data_input
[
'image'
]
=
np
.
flip
(
data_input
[
'image'
],
[
3
])
output_flipped
=
exe
.
run
(
val_program
,
feed
=
data_input
,
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
output_flipped
=
np
.
array
(
output_flipped
[
0
])
flip_perm
=
[[
1
,
2
],
[
3
,
4
],
[
5
,
6
],
[
7
,
8
],
[
9
,
10
],
[
11
,
12
],
[
13
,
14
],
[
15
,
16
]]
output_flipped
=
flip_back
(
output_flipped
,
flip_perm
)
output_flipped
[:,
:,
:,
1
:]
=
copy
.
copy
(
output_flipped
)[:,
:,
:,
0
:
-
1
]
hrnet_outputs
=
(
np
.
array
(
outs
[
0
])
+
output_flipped
)
*
0.5
imshape
=
(
np
.
array
(
data
[
'im_shape'
])
)[:,
::
-
1
]
if
'im_shape'
in
data
else
None
center
=
np
.
array
(
data
[
'center'
])
if
'center'
in
data
else
np
.
round
(
imshape
/
2.
)
scale
=
np
.
array
(
data
[
'scale'
])
if
'scale'
in
data
else
imshape
/
200.
outputs
=
post_process
(
hrnet_outputs
,
center
,
scale
)
outputs
=
{
'keypoint'
:
outputs
}
metric
.
update
(
data_all
,
outputs
)
if
batch_id
%
100
==
0
:
print
(
'Eval iter:'
,
batch_id
)
metric
.
accumulate
()
metric
.
log
()
metric
.
reset
()
def
eval_function
(
exe
,
compiled_test_program
,
test_feed_names
,
test_fetch_list
):
dataset
.
check_or_download_dataset
()
anno_file
=
dataset
.
get_anno
()
metric
=
KeyPointTopDownCOCOEval
(
anno_file
,
len
(
dataset
),
17
,
'output_eval'
)
post_process
=
HRNetPostProcess
()
for
batch_id
,
data
in
enumerate
(
val_loader
):
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
data_input
=
{}
for
k
,
v
in
data
.
items
():
if
k
in
test_feed_names
:
data_input
[
k
]
=
np
.
array
(
v
)
outs
=
exe
.
run
(
compiled_test_program
,
feed
=
data_input
,
fetch_list
=
test_fetch_list
,
return_numpy
=
False
)
data_input
[
'image'
]
=
np
.
flip
(
data_input
[
'image'
],
[
3
])
output_flipped
=
exe
.
run
(
compiled_test_program
,
feed
=
data_input
,
fetch_list
=
test_fetch_list
,
return_numpy
=
False
)
output_flipped
=
np
.
array
(
output_flipped
[
0
])
flip_perm
=
[[
1
,
2
],
[
3
,
4
],
[
5
,
6
],
[
7
,
8
],
[
9
,
10
],
[
11
,
12
],
[
13
,
14
],
[
15
,
16
]]
output_flipped
=
flip_back
(
output_flipped
,
flip_perm
)
output_flipped
[:,
:,
:,
1
:]
=
copy
.
copy
(
output_flipped
)[:,
:,
:,
0
:
-
1
]
hrnet_outputs
=
(
np
.
array
(
outs
[
0
])
+
output_flipped
)
*
0.5
imshape
=
(
np
.
array
(
data
[
'im_shape'
])
)[:,
::
-
1
]
if
'im_shape'
in
data
else
None
center
=
np
.
array
(
data
[
'center'
])
if
'center'
in
data
else
np
.
round
(
imshape
/
2.
)
scale
=
np
.
array
(
data
[
'scale'
])
if
'scale'
in
data
else
imshape
/
200.
outputs
=
post_process
(
hrnet_outputs
,
center
,
scale
)
outputs
=
{
'keypoint'
:
outputs
}
metric
.
update
(
data_all
,
outputs
)
if
batch_id
%
100
==
0
:
print
(
'Eval iter:'
,
batch_id
)
metric
.
accumulate
()
metric
.
log
()
map_res
=
metric
.
get_results
()
metric
.
reset
()
return
map_res
[
'keypoint'
][
0
]
def
main
():
all_config
=
load_slim_config
(
FLAGS
.
config_path
)
global
global_config
assert
"Global"
in
all_config
,
f
"Key 'Global' not found in config file.
\n
{
all_config
}
"
global_config
=
all_config
[
"Global"
]
reader_cfg
=
load_config
(
global_config
[
'reader_config'
])
train_loader
=
create
(
'EvalReader'
)(
reader_cfg
[
'TrainDataset'
],
reader_cfg
[
'worker_num'
],
return_list
=
True
)
train_loader
=
reader_wrapper
(
train_loader
,
global_config
[
'input_list'
])
global
dataset
dataset
=
reader_cfg
[
'EvalDataset'
]
global
val_loader
val_loader
=
create
(
'EvalReader'
)(
reader_cfg
[
'EvalDataset'
],
reader_cfg
[
'worker_num'
],
return_list
=
True
)
if
FLAGS
.
eval
:
eval
(
global_config
)
sys
.
exit
(
0
)
if
'Evaluation'
in
global_config
.
keys
()
and
global_config
[
'Evaluation'
]:
eval_func
=
eval_function
else
:
eval_func
=
None
ac
=
AutoCompression
(
model_dir
=
global_config
[
"model_dir"
],
model_filename
=
global_config
[
"model_filename"
],
params_filename
=
global_config
[
"params_filename"
],
save_dir
=
FLAGS
.
save_dir
,
config
=
all_config
,
train_dataloader
=
train_loader
,
eval_callback
=
eval_func
)
ac
.
compress
()
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
parser
=
argsparser
()
FLAGS
=
parser
.
parse_args
()
print_arguments
(
FLAGS
)
assert
FLAGS
.
devices
in
[
'cpu'
,
'gpu'
,
'xpu'
,
'npu'
]
paddle
.
set_device
(
FLAGS
.
devices
)
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录