未验证 提交 c63a7aae 编写于 作者: L Liufang Sang 提交者: GitHub

add quantization install description (#309)

上级 49772be6
......@@ -22,13 +22,13 @@ PaddleSlim会从底层能力、技术咨询合作和业务场景等角度支持
<tbody>
<tr>
<td style="text-align:center;">
<span style="font-size:18px;">功能模块</span>
<span style="font-size:18px;">功能模块</span>
</td>
<td style="text-align:center;">
<span style="font-size:18px;">算法</span>
<span style="font-size:18px;">算法</span>
</td>
<td style="text-align:center;">
<span style="font-size:18px;">教程</span><span style="font-size:18px;">与文档</span>
<span style="font-size:18px;">教程</span><span style="font-size:18px;">与文档</span>
</td>
</tr>
<tr>
......@@ -51,7 +51,7 @@ PaddleSlim会从底层能力、技术咨询合作和业务场景等角度支持
</li>
<li>
<span style="background-color:#FFFDFA;">Opt Slim Pruner:&nbsp;<a href="https://arxiv.org/pdf/1708.06519.pdf" target="_blank"><span style="font-family:&quot;font-size:14px;background-color:#FFFFFF;">Ye Y , You G , Fwu J K , et al. Channel Pruning via Optimal Thresholding[J]. 2020.</span></a><br />
</span>
</span>
</li>
</ul>
</td>
......@@ -88,7 +88,7 @@ PaddleSlim会从底层能力、技术咨询合作和业务场景等角度支持
Quantization Aware Training:&nbsp;<a href="https://arxiv.org/abs/1806.08342" target="_blank"><span style="font-family:&quot;font-size:14px;background-color:#FFFFFF;">Krishnamoorthi R . Quantizing deep convolutional networks for efficient inference: A whitepaper[J]. 2018.</span></a>
</li>
<li>
Post Training&nbsp;<span>Quantization&nbsp;</span><a href="http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf" target="_blank">原理</a>
Post Training&nbsp;<span>Quantization&nbsp;</span><a href="http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf" target="_blank">原理</a>
</li>
<li>
Embedding&nbsp;<span>Quantization:&nbsp;<a href="https://arxiv.org/pdf/1603.01025.pdf" target="_blank"><span style="font-family:&quot;font-size:14px;background-color:#FFFFFF;">Miyashita D , Lee E H , Murmann B . Convolutional Neural Networks using Logarithmic Data Representation[J]. 2016.</span></a></span>
......@@ -201,6 +201,29 @@ PaddleSlim会从底层能力、技术咨询合作和业务场景等角度支持
```bash
pip install paddleslim -i https://pypi.tuna.tsinghua.edu.cn/simple
```
### 量化和Paddle版本的对应关系
如果在ARM和GPU上预测,每个版本都可以,如果在CPU上预测,请选择Paddle 2.0对应的PaddleSlim 1.1.0版本
- Paddle 1.7 系列版本,需要安装PaddleSlim 1.0.1版本
```bash
pip install paddleslim==1.0.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
```
- Paddle 1.8 系列版本,需要安装PaddleSlim 1.1.1版本
```bash
pip install paddleslim==1.1.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
```
- Paddle 2.0 系列版本,需要安装PaddleSlim 1.1.0版本
```bash
pip install paddleslim==1.1.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
```
## 使用
......
......@@ -56,6 +56,30 @@ Paddle >= 1.7.0
pip install paddleslim -i https://pypi.org/simple
```
### quantization
If you want to use quantization in PaddleSlim, please install PaddleSlim as follows.
If you want to use quantized model in ARM and GPU, any PaddleSlim version is ok and you should install 1.1.0 for CPU.
- For Paddle 1.7, install PaddleSlim 1.0.1
```bash
pip install paddleslim==1.0.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
```
- For Paddle 1.8,install PaddleSlim 1.1.1
```bash
pip install paddleslim==1.1.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
```
- For Paddle 2.0 ,install PaddleSlim 1.1.0
```bash
pip install paddleslim==1.1.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
```
## Usage
- [QuickStart](https://paddlepaddle.github.io/PaddleSlim/quick_start/index_en.html): Introduce how to use PaddleSlim by simple examples.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册