Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
a929c49a
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a929c49a
编写于
6月 24, 2022
作者:
G
Guanghua Yu
提交者:
GitHub
6月 24, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support voc dataset in act (#1185)
* support voc dataset in act * fix readme
上级
f29efe4b
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
285 addition
and
77 deletion
+285
-77
demo/auto_compression/detection/README.md
demo/auto_compression/detection/README.md
+13
-8
demo/auto_compression/detection/configs/ssd_mbv1_voc_qat_dis.yaml
...o_compression/detection/configs/ssd_mbv1_voc_qat_dis.yaml
+33
-0
demo/auto_compression/detection/configs/ssd_reader.yml
demo/auto_compression/detection/configs/ssd_reader.yml
+30
-0
demo/auto_compression/detection/eval.py
demo/auto_compression/detection/eval.py
+167
-0
demo/auto_compression/detection/run.py
demo/auto_compression/detection/run.py
+29
-60
paddleslim/auto_compression/compressor.py
paddleslim/auto_compression/compressor.py
+13
-9
未找到文件。
demo/auto_compression/detection/README.md
浏览文件 @
a929c49a
...
...
@@ -113,24 +113,29 @@ wget https://bj.bcebos.com/v1/paddle-slim-models/detection/ppyoloe_crn_l_300e_co
tar
-xf
ppyoloe_crn_l_300e_coco.tar
```
#### 3.4. 测试模型精度
**注意**
:TinyPose模型暂不支持精度测试。
使用run.py脚本得到模型的mAP:
#### 3.4 自动压缩并产出模型
蒸馏量化自动压缩示例通过run.py脚本启动,会使用接口
```paddleslim.auto_compression.AutoCompression```
对模型进行自动压缩。配置config文件中模型路径、蒸馏、量化、和训练等部分的参数,配置完成后便可对模型进行量化和蒸馏。具体运行命令为:
```
# 单卡
export CUDA_VISIBLE_DEVICES=0
python run.py --config_path=./configs/ppyoloe_l_qat_dis.yaml --eval=True
# 多卡
# export CUDA_VISIBLE_DEVICES=0,1,2,3
python run.py --config_path=./configs/ppyoloe_l_qat_dis.yaml --save_dir='./output/'
```
**注意**
:TinyPose模型暂不支持精度测试。
#### 3.5 测试模型精度
#### 3.5 自动压缩并产出模型
蒸馏量化自动压缩示例通过run.py脚本启动,会使用接口
```paddleslim.auto_compression.AutoCompression```
对模型进行自动压缩。配置config文件中模型路径、蒸馏、量化、和训练等部分的参数,配置完成后便可对模型进行量化和蒸馏。具体运行命令为:
使用run.py脚本得到模型的mAP:
```
export CUDA_VISIBLE_DEVICES=0
python
run.py --config_path=./configs/ppyoloe_l_qat_dis.yaml --save_dir='./output/'
python
eval.py --config_path=./configs/ppyoloe_l_qat_dis.yaml
```
**注意**
:要测试的模型路径可以在配置文件中
`model_dir`
字段下进行修改。
## 4.预测部署
...
...
demo/auto_compression/detection/configs/ssd_mbv1_voc_qat_dis.yaml
0 → 100644
浏览文件 @
a929c49a
Global
:
reader_config
:
configs/ssd_reader.yml
input_list
:
[
'
image'
,
'
scale_factor'
,
'
im_shape'
]
Evaluation
:
True
model_dir
:
./ssd_mobilenet_v1_300_120e_voc/
model_filename
:
model.pdmodel
params_filename
:
model.pdiparams
Distillation
:
alpha
:
1.0
loss
:
l2
node
:
-
concat_0.tmp_0
-
concat_2.tmp_0
Quantization
:
activation_quantize_type
:
'
range_abs_max'
quantize_op_types
:
-
conv2d
-
depthwise_conv2d
TrainConfig
:
train_iter
:
80000
eval_iter
:
1000
learning_rate
:
type
:
CosineAnnealingDecay
learning_rate
:
0.00001
T_max
:
120000
optimizer_builder
:
optimizer
:
type
:
SGD
weight_decay
:
4.0e-05
demo/auto_compression/detection/configs/ssd_reader.yml
0 → 100644
浏览文件 @
a929c49a
metric
:
VOC
map_type
:
11point
num_classes
:
20
# Datset configuration
TrainDataset
:
!VOCDataSet
dataset_dir
:
dataset/voc
anno_path
:
trainval.txt
label_list
:
label_list.txt
data_fields
:
[
'
image'
,
'
gt_bbox'
,
'
gt_class'
,
'
difficult'
]
EvalDataset
:
!VOCDataSet
dataset_dir
:
dataset/voc
anno_path
:
test.txt
label_list
:
label_list.txt
data_fields
:
[
'
image'
,
'
gt_bbox'
,
'
gt_class'
,
'
difficult'
]
worker_num
:
0
# preprocess reader in test
EvalReader
:
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
target_size
:
[
300
,
300
],
keep_ratio
:
False
,
interp
:
1
}
-
NormalizeImage
:
{
mean
:
[
127.5
,
127.5
,
127.5
],
std
:
[
127.502231
,
127.502231
,
127.502231
],
is_scale
:
false
}
-
Permute
:
{}
batch_size
:
16
collate_batch
:
false
demo/auto_compression/detection/eval.py
0 → 100644
浏览文件 @
a929c49a
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
import
numpy
as
np
import
argparse
import
paddle
from
ppdet.core.workspace
import
load_config
,
merge_config
from
ppdet.core.workspace
import
create
from
ppdet.metrics
import
COCOMetric
,
VOCMetric
from
paddleslim.auto_compression.config_helpers
import
load_config
as
load_slim_config
from
post_process
import
YOLOv5PostProcess
def
argsparser
():
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
'--config_path'
,
type
=
str
,
default
=
None
,
help
=
"path of compression strategy config."
,
required
=
True
)
parser
.
add_argument
(
'--devices'
,
type
=
str
,
default
=
'gpu'
,
help
=
"which device used to compress."
)
return
parser
def
print_arguments
(
args
):
print
(
'----------- Running Arguments -----------'
)
for
arg
,
value
in
sorted
(
vars
(
args
).
items
()):
print
(
'%s: %s'
%
(
arg
,
value
))
print
(
'------------------------------------------'
)
def
reader_wrapper
(
reader
,
input_list
):
def
gen
():
for
data
in
reader
:
in_dict
=
{}
if
isinstance
(
input_list
,
list
):
for
input_name
in
input_list
:
in_dict
[
input_name
]
=
data
[
input_name
]
elif
isinstance
(
input_list
,
dict
):
for
input_name
in
input_list
.
keys
():
in_dict
[
input_list
[
input_name
]]
=
data
[
input_name
]
yield
in_dict
return
gen
def
convert_numpy_data
(
data
,
metric
):
data_all
=
{}
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
if
isinstance
(
metric
,
VOCMetric
):
for
k
,
v
in
data_all
.
items
():
if
not
isinstance
(
v
[
0
],
np
.
ndarray
):
tmp_list
=
[]
for
t
in
v
:
tmp_list
.
append
(
np
.
array
(
t
))
data_all
[
k
]
=
np
.
array
(
tmp_list
)
else
:
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
return
data_all
def
eval
():
place
=
paddle
.
CUDAPlace
(
0
)
if
FLAGS
.
devices
==
'gpu'
else
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
val_program
,
feed_target_names
,
fetch_targets
=
paddle
.
fluid
.
io
.
load_inference_model
(
global_config
[
"model_dir"
],
exe
,
model_filename
=
global_config
[
"model_filename"
],
params_filename
=
global_config
[
"params_filename"
])
print
(
'Loaded model from: {}'
.
format
(
global_config
[
"model_dir"
]))
metric
=
global_config
[
'metric'
]
for
batch_id
,
data
in
enumerate
(
val_loader
):
data_all
=
convert_numpy_data
(
data
,
metric
)
data_input
=
{}
for
k
,
v
in
data
.
items
():
if
isinstance
(
global_config
[
'input_list'
],
list
):
if
k
in
global_config
[
'input_list'
]:
data_input
[
k
]
=
np
.
array
(
v
)
elif
isinstance
(
global_config
[
'input_list'
],
dict
):
if
k
in
global_config
[
'input_list'
].
keys
():
data_input
[
global_config
[
'input_list'
][
k
]]
=
np
.
array
(
v
)
outs
=
exe
.
run
(
val_program
,
feed
=
data_input
,
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
res
=
{}
if
'arch'
in
global_config
and
global_config
[
'arch'
]
==
'YOLOv5'
:
postprocess
=
YOLOv5PostProcess
(
score_threshold
=
0.001
,
nms_threshold
=
0.6
,
multi_label
=
True
)
res
=
postprocess
(
np
.
array
(
outs
[
0
]),
data_all
[
'scale_factor'
])
else
:
for
out
in
outs
:
v
=
np
.
array
(
out
)
if
len
(
v
.
shape
)
>
1
:
res
[
'bbox'
]
=
v
else
:
res
[
'bbox_num'
]
=
v
metric
.
update
(
data_all
,
res
)
if
batch_id
%
100
==
0
:
print
(
'Eval iter:'
,
batch_id
)
metric
.
accumulate
()
metric
.
log
()
metric
.
reset
()
def
main
():
global
global_config
_
,
_
,
global_config
=
load_slim_config
(
FLAGS
.
config_path
)
reader_cfg
=
load_config
(
global_config
[
'reader_config'
])
dataset
=
reader_cfg
[
'EvalDataset'
]
global
val_loader
val_loader
=
create
(
'EvalReader'
)(
reader_cfg
[
'EvalDataset'
],
reader_cfg
[
'worker_num'
],
return_list
=
True
)
metric
=
None
if
reader_cfg
[
'metric'
]
==
'COCO'
:
clsid2catid
=
{
v
:
k
for
k
,
v
in
dataset
.
catid2clsid
.
items
()}
anno_file
=
dataset
.
get_anno
()
metric
=
COCOMetric
(
anno_file
=
anno_file
,
clsid2catid
=
clsid2catid
,
IouType
=
'bbox'
)
elif
reader_cfg
[
'metric'
]
==
'VOC'
:
metric
=
VOCMetric
(
label_list
=
dataset
.
get_label_list
(),
class_num
=
reader_cfg
[
'num_classes'
],
map_type
=
reader_cfg
[
'map_type'
])
else
:
raise
ValueError
(
"metric currently only supports COCO and VOC."
)
global_config
[
'metric'
]
=
metric
eval
()
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
parser
=
argsparser
()
FLAGS
=
parser
.
parse_args
()
print_arguments
(
FLAGS
)
assert
FLAGS
.
devices
in
[
'cpu'
,
'gpu'
,
'xpu'
,
'npu'
]
paddle
.
set_device
(
FLAGS
.
devices
)
main
()
demo/auto_compression/detection/run.py
浏览文件 @
a929c49a
...
...
@@ -19,7 +19,7 @@ import argparse
import
paddle
from
ppdet.core.workspace
import
load_config
,
merge_config
from
ppdet.core.workspace
import
create
from
ppdet.metrics
import
COCOMetric
from
ppdet.metrics
import
COCOMetric
,
VOCMetric
from
paddleslim.auto_compression.config_helpers
import
load_config
as
load_slim_config
from
paddleslim.auto_compression
import
AutoCompression
...
...
@@ -72,65 +72,25 @@ def reader_wrapper(reader, input_list):
return
gen
def
eval
(
config
):
place
=
paddle
.
CUDAPlace
(
0
)
if
FLAGS
.
devices
==
'gpu'
else
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
val_program
,
feed_target_names
,
fetch_targets
=
paddle
.
fluid
.
io
.
load_inference_model
(
config
[
"model_dir"
],
exe
,
model_filename
=
config
[
"model_filename"
],
params_filename
=
config
[
"params_filename"
],
)
clsid2catid
=
{
v
:
k
for
k
,
v
in
dataset
.
catid2clsid
.
items
()}
anno_file
=
dataset
.
get_anno
()
metric
=
COCOMetric
(
anno_file
=
anno_file
,
clsid2catid
=
clsid2catid
,
IouType
=
'bbox'
)
for
batch_id
,
data
in
enumerate
(
val_loader
):
def
convert_numpy_data
(
data
,
metric
):
data_all
=
{}
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
data_input
=
{}
for
k
,
v
in
data
.
items
():
if
isinstance
(
config
[
'input_list'
],
list
):
if
k
in
config
[
'input_list'
]:
data_input
[
k
]
=
np
.
array
(
v
)
elif
isinstance
(
config
[
'input_list'
],
dict
):
if
k
in
config
[
'input_list'
].
keys
():
data_input
[
config
[
'input_list'
][
k
]]
=
np
.
array
(
v
)
outs
=
exe
.
run
(
val_program
,
feed
=
data_input
,
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
res
=
{}
if
'arch'
in
config
and
config
[
'arch'
]
==
'YOLOv5'
:
postprocess
=
YOLOv5PostProcess
(
score_threshold
=
0.001
,
nms_threshold
=
0.6
,
multi_label
=
True
)
res
=
postprocess
(
np
.
array
(
outs
[
0
]),
data_all
[
'scale_factor'
])
else
:
for
out
in
outs
:
v
=
np
.
array
(
out
)
if
len
(
v
.
shape
)
>
1
:
res
[
'bbox'
]
=
v
if
isinstance
(
metric
,
VOCMetric
):
for
k
,
v
in
data_all
.
items
():
if
not
isinstance
(
v
[
0
],
np
.
ndarray
):
tmp_list
=
[]
for
t
in
v
:
tmp_list
.
append
(
np
.
array
(
t
))
data_all
[
k
]
=
np
.
array
(
tmp_list
)
else
:
res
[
'bbox_num'
]
=
v
metric
.
update
(
data_all
,
res
)
if
batch_id
%
100
==
0
:
print
(
'Eval iter:'
,
batch_id
)
metric
.
accumulate
()
metric
.
log
()
metric
.
reset
()
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
return
data_all
def
eval_function
(
exe
,
compiled_test_program
,
test_feed_names
,
test_fetch_list
):
clsid2catid
=
{
v
:
k
for
k
,
v
in
dataset
.
catid2clsid
.
items
()}
anno_file
=
dataset
.
get_anno
()
metric
=
COCOMetric
(
anno_file
=
anno_file
,
clsid2catid
=
clsid2catid
,
IouType
=
'bbox'
)
metric
=
global_config
[
'metric'
]
for
batch_id
,
data
in
enumerate
(
val_loader
):
data_all
=
{
k
:
np
.
array
(
v
)
for
k
,
v
in
data
.
items
()}
data_all
=
convert_numpy_data
(
data
,
metric
)
data_input
=
{}
for
k
,
v
in
data
.
items
():
if
isinstance
(
global_config
[
'input_list'
],
list
):
...
...
@@ -177,16 +137,25 @@ def main():
return_list
=
True
)
train_loader
=
reader_wrapper
(
train_loader
,
global_config
[
'input_list'
])
global
dataset
dataset
=
reader_cfg
[
'EvalDataset'
]
global
val_loader
val_loader
=
create
(
'EvalReader'
)(
reader_cfg
[
'EvalDataset'
],
reader_cfg
[
'worker_num'
],
return_list
=
True
)
if
FLAGS
.
eval
:
eval
(
global_config
)
sys
.
exit
(
0
)
metric
=
None
if
reader_cfg
[
'metric'
]
==
'COCO'
:
clsid2catid
=
{
v
:
k
for
k
,
v
in
dataset
.
catid2clsid
.
items
()}
anno_file
=
dataset
.
get_anno
()
metric
=
COCOMetric
(
anno_file
=
anno_file
,
clsid2catid
=
clsid2catid
,
IouType
=
'bbox'
)
elif
reader_cfg
[
'metric'
]
==
'VOC'
:
metric
=
VOCMetric
(
label_list
=
dataset
.
get_label_list
(),
class_num
=
reader_cfg
[
'num_classes'
],
map_type
=
reader_cfg
[
'map_type'
])
else
:
raise
ValueError
(
"metric currently only supports COCO and VOC."
)
global_config
[
'metric'
]
=
metric
if
'Evaluation'
in
global_config
.
keys
()
and
global_config
[
'Evaluation'
]:
eval_func
=
eval_function
...
...
paddleslim/auto_compression/compressor.py
浏览文件 @
a929c49a
...
...
@@ -611,7 +611,8 @@ class AutoCompression:
def
_start_train
(
self
,
train_program_info
,
test_program_info
,
strategy
):
best_metric
=
-
1.0
total_epochs
=
self
.
train_config
.
epochs
if
self
.
train_config
.
epochs
else
1
total_epochs
=
self
.
train_config
.
epochs
if
self
.
train_config
.
epochs
else
100
total_train_iter
=
0
for
epoch_id
in
range
(
total_epochs
):
for
batch_id
,
data
in
enumerate
(
self
.
train_dataloader
()):
np_probs_float
,
=
self
.
_exe
.
run
(
train_program_info
.
program
,
\
...
...
@@ -627,11 +628,13 @@ class AutoCompression:
else
:
logging_iter
=
self
.
train_config
.
logging_iter
if
batch_id
%
int
(
logging_iter
)
==
0
:
_logger
.
info
(
"epoch: {}, batch: {}, loss: {}"
.
format
(
epoch_id
,
batch_id
,
np_probs_float
))
if
batch_id
%
int
(
self
.
train_config
.
eval_iter
)
==
0
and
batch_id
!=
0
:
_logger
.
info
(
"Total iter: {}, epoch: {}, batch: {}, loss: {}"
.
format
(
total_train_iter
,
epoch_id
,
batch_id
,
np_probs_float
))
total_train_iter
+=
1
if
total_train_iter
%
int
(
self
.
train_config
.
eval_iter
)
==
0
and
total_train_iter
!=
0
:
if
self
.
eval_function
is
not
None
:
# GMP pruner step 3: update params before summrizing sparsity, saving model or evaluation.
...
...
@@ -644,8 +647,9 @@ class AutoCompression:
test_program_info
.
fetch_targets
)
_logger
.
info
(
"epoch: {}, batch: {} metric of compressed model is: {}, best metric of compressed model is {}"
.
format
(
epoch_id
,
batch_id
,
metric
,
best_metric
))
"epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}"
.
format
(
epoch_id
,
metric
,
best_metric
))
if
metric
>
best_metric
:
paddle
.
static
.
save
(
program
=
test_program_info
.
program
.
_program
,
...
...
@@ -665,7 +669,7 @@ class AutoCompression:
_logger
.
warning
(
"Not set eval function, so unable to test accuracy performance."
)
if
self
.
train_config
.
train_iter
and
batch_id
>=
self
.
train_config
.
train_iter
:
if
self
.
train_config
.
train_iter
and
total_train_iter
>=
self
.
train_config
.
train_iter
:
break
if
'unstructure'
in
self
.
_strategy
or
self
.
train_config
.
sparse_model
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录