提交 a70c13da 编写于 作者: W wanghaoshuang

Merge branch 'save_load_for_nas' into 'develop'

add save_load for sanas

See merge request !60
......@@ -13,10 +13,12 @@
# limitations under the License.
"""The controller used to search hyperparameters or neural architecture"""
import os
import copy
import math
import logging
import numpy as np
import json
from .controller import EvolutionaryController
from log_helper import get_logger
......@@ -34,15 +36,25 @@ class SAController(EvolutionaryController):
init_temperature=1024,
max_try_times=None,
init_tokens=None,
constrain_func=None):
reward=-1,
max_reward=-1,
iters=0,
best_tokens=None,
constrain_func=None,
checkpoints=None):
"""Initialize.
Args:
range_table(list<int>): Range table.
reduce_rate(float): The decay rate of temperature.
init_temperature(float): Init temperature.
max_try_times(int): max try times before get legal tokens.
init_tokens(list<int>): The initial tokens.
init_tokens(list<int>): The initial tokens. Default: None.
reward(float): The reward of current tokens. Default: -1.
max_reward(float): The max reward in the search of sanas, in general, best tokens get max reward. Default: -1.
iters(int): The iteration of sa controller. Default: 0.
best_tokens(list<int>): The best tokens in the search of sanas, in general, best tokens get max reward. Default: None.
constrain_func(function): The callback function used to check whether the tokens meet constraint. None means there is no constraint. Default: None.
checkpoints(str): if checkpoint is None, donnot save checkpoints, else save scene to checkpoints file.
"""
super(SAController, self).__init__()
self._range_table = range_table
......@@ -51,12 +63,13 @@ class SAController(EvolutionaryController):
self._reduce_rate = reduce_rate
self._init_temperature = init_temperature
self._max_try_times = max_try_times
self._reward = -1
self._reward = reward
self._tokens = init_tokens
self._constrain_func = constrain_func
self._max_reward = -1
self._best_tokens = None
self._iter = 0
self._max_reward = max_reward
self._best_tokens = best_tokens
self._iter = iters
self._checkpoints = checkpoints
def __getstate__(self):
d = {}
......@@ -84,8 +97,11 @@ class SAController(EvolutionaryController):
self._max_reward = reward
self._best_tokens = tokens
_logger.info(
"Controller - iter: {}; current_reward: {}; current tokens: {}".
format(self._iter, self._reward, self._tokens))
"Controller - iter: {}; best_reward: {}, best tokens: {}, current_reward: {}; current tokens: {}".
format(self._iter, self._reward, self._tokens, reward, tokens))
if self._checkpoints != None:
self._save_checkpoint(self._checkpoints)
def next_tokens(self, control_token=None):
"""
......@@ -108,8 +124,19 @@ class SAController(EvolutionaryController):
index = int(len(self._range_table[0]) * np.random.random())
new_tokens = tokens[:]
new_tokens[index] = np.random.randint(
self._range_table[0][index],
self._range_table[1][index])
self._range_table[0][index], self._range_table[1][index])
else:
break
return new_tokens
def _save_checkpoint(self, output_dir):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
file_path = os.path.join(output_dir, 'sanas.checkpoints')
scene = dict()
for key in self.__dict__:
if key in ['_checkpoints']:
continue
scene[key] = self.__dict__[key]
with open(file_path, 'w') as f:
json.dump(scene, f)
......@@ -12,9 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import socket
import logging
import numpy as np
import json
import hashlib
import paddle.fluid as fluid
from ..core import VarWrapper, OpWrapper, GraphWrapper
......@@ -39,6 +41,8 @@ class SANAS(object):
reduce_rate=0.85,
search_steps=300,
key="sa_nas",
save_checkpoint='nas_checkpoint',
load_checkpoint=None,
is_server=False):
"""
Search a group of ratios used to prune program.
......@@ -51,6 +55,8 @@ class SANAS(object):
reduce_rate(float): The decay rate used in simulated annealing search strategy.
search_steps(int): The steps of searching.
key(str): Identity used in communication between controller server and clients.
save_checkpoint(string|None): The directory of checkpoint to save, if set to None, not save checkpoint. Default: 'nas_checkpoint'.
load_checkpoint(string|None): The directory of checkpoint to load, if set to None, not load checkpoint. Default: None.
is_server(bool): Whether current host is controller server. Default: True.
"""
if not is_server:
......@@ -75,13 +81,39 @@ class SANAS(object):
range_table = self._search_space.range_table()
range_table = (len(range_table) * [0], range_table)
_logger.info("range table: {}".format(range_table))
if load_checkpoint != None:
assert os.path.exists(
load_checkpoint
) == True, 'load checkpoint file NOT EXIST!!! Please check the directory of checkpoint!!!'
checkpoint_path = os.path.join(load_checkpoint,
'sanas.checkpoints')
with open(checkpoint_path, 'r') as f:
scene = json.load(f)
preinit_tokens = scene['_tokens']
prereward = scene['_reward']
premax_reward = scene['_max_reward']
prebest_tokens = scene['_best_tokens']
preiter = scene['_iter']
else:
preinit_tokens = init_tokens
prereward = -1
premax_reward = -1
prebest_tokens = None
preiter = 0
controller = SAController(
range_table,
self._reduce_rate,
self._init_temperature,
max_try_times=None,
init_tokens=init_tokens,
constrain_func=None)
init_tokens=preinit_tokens,
reward=prereward,
max_reward=premax_reward,
iters=preiter,
best_tokens=prebest_tokens,
constrain_func=None,
checkpoints=save_checkpoint)
max_client_num = 100
self._controller_server = ControllerServer(
......@@ -96,7 +128,10 @@ class SANAS(object):
self._controller_client = ControllerClient(
server_ip, server_port, key=self._key)
self._iter = 0
if is_server and load_checkpoint != None:
self._iter = scene['_iter']
else:
self._iter = 0
def _get_host_ip(self):
return socket.gethostbyname(socket.gethostname())
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册