Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
9e14508c
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9e14508c
编写于
1月 17, 2023
作者:
Z
zhouzj
提交者:
GitHub
1月 17, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix the bug of flatten op in pruning. (#1639)
上级
82da1f14
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
27 addition
and
25 deletion
+27
-25
paddleslim/prune/prune_worker.py
paddleslim/prune/prune_worker.py
+24
-21
tests/dygraph/test_filter_pruner.py
tests/dygraph/test_filter_pruner.py
+3
-4
未找到文件。
paddleslim/prune/prune_worker.py
浏览文件 @
9e14508c
...
...
@@ -89,8 +89,8 @@ class PruneWorker(object):
transforms(list<dict>): The transforms applied the the current variable/mask.
"""
if
var
.
name
()
in
self
.
skip_vars
:
raise
UnsupportOpError
(
"Variable {} was skipped."
.
format
(
var
.
name
(
)))
raise
UnsupportOpError
(
"Variable {} was skipped."
.
format
(
var
.
name
(
)))
if
self
.
_visit
(
var
,
pruned_axis
):
self
.
_prune
(
var
,
pruned_axis
,
transforms
)
...
...
@@ -109,8 +109,8 @@ class PruneWorker(object):
def
_visit_and_search
(
self
,
var
,
axis
,
transforms
):
self
.
_visit
(
var
,
axis
)
if
var
.
name
()
in
self
.
skip_vars
:
raise
UnsupportOpError
(
"Variable {} was skipped."
.
format
(
var
.
name
(
)))
raise
UnsupportOpError
(
"Variable {} was skipped."
.
format
(
var
.
name
(
)))
pre_ops
=
var
.
inputs
()
for
op
in
pre_ops
:
self
.
_prune_op
(
op
,
var
,
axis
,
transforms
)
...
...
@@ -127,8 +127,8 @@ class PruneWorker(object):
if
visited
is
not
None
:
self
.
visited
=
visited
if
op
.
type
()
in
self
.
ops_unsupported
:
raise
UnsupportOpError
(
"Unsupported operator named {}"
.
format
(
op
.
type
()))
raise
UnsupportOpError
(
"Unsupported operator named {}"
.
format
(
op
.
type
()))
cls
=
PRUNE_WORKER
.
get
(
op
.
type
())
if
cls
is
None
:
if
op
.
type
()
in
SKIPPED_OPS
:
...
...
@@ -136,8 +136,8 @@ class PruneWorker(object):
if
op
.
type
()
in
OPS_UNCHANGE_SHAPE
or
not
self
.
skip_stranger
:
cls
=
PRUNE_WORKER
.
get
(
"default_worker"
)
else
:
raise
UnsupportOpError
(
"Unsupported operator named {}"
.
format
(
op
.
type
()))
raise
UnsupportOpError
(
"Unsupported operator named {}"
.
format
(
op
.
type
()))
_logger
.
debug
(
"
\n
from: {}
\n
to: {}
\n
pruned_axis: {}; var: {}
\n
trans: {}"
.
format
(
self
.
op
,
op
,
pruned_axis
,
var
.
name
(),
transforms
))
...
...
@@ -662,12 +662,13 @@ class depthwise_conv2d(PruneWorker):
"repeat"
:
repeat
}])
# It will not pruning number of kernels in depthwise conv2d,
# so it is not neccesary to search succeed operators.
# so it is not neccesary to search succeed operators.
# self._visit_and_search(_filter, 1, transforms)
self
.
_visit
(
_filter
,
1
)
self
.
_visit_and_search
(
_out
,
channel_axis
,
transforms
+
[{
"repeat"
:
repeat
}])
self
.
_visit_and_search
(
_out
,
channel_axis
,
transforms
+
[{
"repeat"
:
repeat
}])
elif
var
==
_filter
:
assert
pruned_axis
==
0
,
"The filter of depthwise conv2d can only be pruned at axis 0."
self
.
append_pruned_vars
(
_filter
,
0
,
transforms
)
...
...
@@ -679,7 +680,7 @@ class depthwise_conv2d(PruneWorker):
self
.
append_pruned_vars
(
_filter
,
0
,
transforms
)
self
.
_visit_and_search
(
_filter
,
0
,
transforms
)
# It will not pruning number of kernels in depthwise conv2d,
# so it is not neccesary to search succeed operators.
# so it is not neccesary to search succeed operators.
# self._visit_and_search(_filter, 1, transforms)
self
.
_visit
(
_filter
,
1
)
self
.
_visit_and_search
(
_in_var
,
channel_axis
,
transforms
)
...
...
@@ -733,8 +734,9 @@ class mul(PruneWorker):
}])
elif
var
==
y
:
if
(
pruned_axis
<
y_num_col_dims
)
and
(
1
<
len
(
x_shape
)
-
x_num_col_dims
)
and
max
(
x_shape
[
x_num_col_dims
:])
!=
np
.
prod
(
y_shape
[:
y_num_col_dims
]):
1
<
len
(
x_shape
)
-
x_num_col_dims
)
and
max
(
x_shape
[
x_num_col_dims
:])
!=
np
.
prod
(
y_shape
[:
y_num_col_dims
]):
raise
UnsupportOpError
(
"Unsupport pruning y of mul when pruned_axis < y_num_col_dims and 1 < len(x_shape) - x_num_col_dims."
)
...
...
@@ -763,8 +765,8 @@ class mul(PruneWorker):
tile
*=
y_shape
[
i
]
for
i
in
range
(
pruned_axis
+
1
,
y_num_col_dims
):
repeat
*=
y_shape
[
i
]
new_pruned_axis
=
int
(
np
.
argmax
(
x_shape
[
x_num_col_dims
:]))
+
x_num_col_dims
new_pruned_axis
=
int
(
np
.
argmax
(
x_shape
[
x_num_col_dims
:]))
+
x_num_col_dims
self
.
append_pruned_vars
(
x
,
# len(x_shape) - 1, trans + [{
...
...
@@ -825,8 +827,8 @@ class matmul(PruneWorker):
mappings
=
[(
1
,
1
,
1
)]
elif
x_shape_len
>=
3
and
y_shape_len
>=
3
:
mappings
=
[(
x_shape_len
-
2
,
-
1
,
x_shape_len
-
2
),
(
x_shape_len
-
1
,
x_shape_len
-
2
,
-
1
),
(
-
1
,
x_shape_len
-
1
,
x_shape_len
-
1
)]
(
x_shape_len
-
1
,
x_shape_len
-
2
,
-
1
),
(
-
1
,
x_shape_len
-
1
,
x_shape_len
-
1
)]
if
var
==
x
:
for
x_i
,
y_i
,
out_i
in
mappings
:
if
pruned_axis
==
x_i
:
...
...
@@ -953,8 +955,9 @@ class flatten_contiguous_range(PruneWorker):
out_pruned_axis
=
pruned_axis
if
pruned_axis
>=
start_axis
and
pruned_axis
<=
stop_axis
:
out_pruned_axis
=
start_axis
for
i
in
range
(
pruned_axis
+
1
,
stop_axis
+
1
):
stride
*=
in_var
.
shape
()[
i
]
for
i
in
range
(
start_axis
,
stop_axis
+
1
):
if
i
!=
pruned_axis
:
stride
*=
in_var
.
shape
()[
i
]
elif
pruned_axis
>
stop_axis
:
out_pruned_axis
=
start_axis
+
pruned_axis
-
stop_axis
...
...
tests/dygraph/test_filter_pruner.py
浏览文件 @
9e14508c
...
...
@@ -149,10 +149,9 @@ class MulNet(paddle.nn.Layer):
def
forward
(
self
,
x
):
conv_a
=
self
.
conv_a
(
x
)
return
paddle
.
fluid
.
layers
.
mul
(
self
.
b
,
conv_a
,
x_num_col_dims
=
1
,
y_num_col_dims
=
3
)
tmp
=
paddle
.
flatten
(
conv_a
,
start_axis
=
0
,
stop_axis
=
2
)
res
=
paddle
.
matmul
(
self
.
b
,
tmp
)
return
res
class
TestPruningMul
(
unittest
.
TestCase
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录