Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
9240f31c
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 1 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9240f31c
编写于
7月 09, 2020
作者:
B
baiyfbupt
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update basekd
上级
4233d6a8
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
162 addition
and
105 deletion
+162
-105
demo/bert/train_distill.py
demo/bert/train_distill.py
+44
-23
paddleslim/nas/darts/search_space/conv_bert/cls.py
paddleslim/nas/darts/search_space/conv_bert/cls.py
+54
-35
paddleslim/nas/darts/search_space/conv_bert/model/bert.py
paddleslim/nas/darts/search_space/conv_bert/model/bert.py
+7
-6
paddleslim/nas/darts/search_space/conv_bert/model/transformer_encoder.py
...darts/search_space/conv_bert/model/transformer_encoder.py
+50
-39
paddleslim/teachers/bert/cls.py
paddleslim/teachers/bert/cls.py
+5
-1
paddleslim/teachers/bert/model/cls.py
paddleslim/teachers/bert/model/cls.py
+2
-1
未找到文件。
demo/bert/train_distill.py
浏览文件 @
9240f31c
...
...
@@ -10,26 +10,34 @@ import pickle
import
logging
from
paddleslim.common
import
AvgrageMeter
,
get_logger
from
paddleslim.nas.darts
import
count_parameters_in_MB
logger
=
get_logger
(
__name__
,
level
=
logging
.
INFO
)
def
valid_one_epoch
(
model
,
valid_loader
,
epoch
,
log_freq
):
accs
=
AvgrageMeter
()
ce_losses
=
AvgrageMeter
()
model
.
student
.
eval
()
t_accs
=
AvgrageMeter
()
model
.
eval
()
step_id
=
0
for
valid_data
in
valid_loader
():
try
:
loss
,
acc
,
ce_loss
,
_
,
_
=
model
.
_layers
.
loss
(
valid_data
,
epoch
)
loss
,
acc
,
ce_loss
,
_
,
_
,
t_acc
=
model
.
_layers
.
loss
(
valid_data
,
epoch
)
except
:
loss
,
acc
,
ce_loss
,
_
,
_
=
model
.
loss
(
valid_data
,
epoch
)
loss
,
acc
,
ce_loss
,
_
,
_
,
t_acc
=
model
.
loss
(
valid_data
,
epoch
)
batch_size
=
valid_data
[
0
].
shape
[
0
]
ce_losses
.
update
(
ce_loss
.
numpy
(),
batch_size
)
accs
.
update
(
acc
.
numpy
(),
batch_size
)
t_accs
.
update
(
t_acc
.
numpy
(),
batch_size
)
step_id
+=
1
return
ce_losses
.
avg
[
0
],
accs
.
avg
[
0
]
return
ce_losses
.
avg
[
0
],
accs
.
avg
[
0
],
t_accs
.
avg
[
0
]
def
train_one_epoch
(
model
,
train_loader
,
optimizer
,
epoch
,
use_data_parallel
,
...
...
@@ -38,18 +46,19 @@ def train_one_epoch(model, train_loader, optimizer, epoch, use_data_parallel,
accs
=
AvgrageMeter
()
ce_losses
=
AvgrageMeter
()
kd_losses
=
AvgrageMeter
()
model
.
student
.
train
()
t_accs
=
AvgrageMeter
()
model
.
train
()
step_id
=
0
for
train_data
in
train_loader
():
batch_size
=
train_data
[
0
].
shape
[
0
]
if
use_data_parallel
:
total_loss
,
acc
,
ce_loss
,
kd_loss
,
_
=
model
.
_layers
.
loss
(
total_loss
,
acc
,
ce_loss
,
kd_loss
,
_
,
t_acc
=
model
.
_layers
.
loss
(
train_data
,
epoch
)
else
:
total_loss
,
acc
,
ce_loss
,
kd_loss
,
_
=
model
.
loss
(
train_data
,
epoch
)
total_loss
,
acc
,
ce_loss
,
kd_loss
,
_
,
t_acc
=
model
.
loss
(
train_data
,
epoch
)
if
use_data_parallel
:
total_loss
=
model
.
scale_loss
(
total_loss
)
...
...
@@ -63,19 +72,23 @@ def train_one_epoch(model, train_loader, optimizer, epoch, use_data_parallel,
accs
.
update
(
acc
.
numpy
(),
batch_size
)
ce_losses
.
update
(
ce_loss
.
numpy
(),
batch_size
)
kd_losses
.
update
(
kd_loss
.
numpy
(),
batch_size
)
t_accs
.
update
(
t_acc
.
numpy
(),
batch_size
)
if
step_id
%
log_freq
==
0
:
logger
.
info
(
"Train Epoch {}, Step {}, Lr {:.6f} total_loss {:.6f}; ce_loss {:.6f}, kd_loss {:.6f}, train_acc {:.6f};"
.
"Train Epoch {}, Step {}, Lr {:.6f} total_loss {:.6f}; ce_loss {:.6f}, kd_loss {:.6f}, train_acc {:.6f}
, teacher_acc {:.6f}
;"
.
format
(
epoch
,
step_id
,
optimizer
.
current_step_lr
(),
total_losses
.
avg
[
0
],
ce_losses
.
avg
[
0
],
kd_losses
.
avg
[
0
],
accs
.
avg
[
0
]))
optimizer
.
current_step_lr
(),
total_losses
.
avg
[
0
],
ce_losses
.
avg
[
0
],
kd_losses
.
avg
[
0
],
accs
.
avg
[
0
],
t_accs
.
avg
[
0
]))
step_id
+=
1
return
total_losses
.
avg
[
0
],
accs
.
avg
[
0
]
def
main
():
# whether use multi-gpus
use_data_parallel
=
False
device_num
=
fluid
.
dygraph
.
parallel
.
Env
().
nranks
use_data_parallel
=
device_num
>
1
place
=
fluid
.
CUDAPlace
(
fluid
.
dygraph
.
parallel
.
Env
(
).
dev_id
)
if
use_data_parallel
else
fluid
.
CUDAPlace
(
0
)
...
...
@@ -88,12 +101,12 @@ def main():
max_seq_len
=
128
batch_size
=
192
hidden_size
=
76
8
hidden_size
=
12
8
emb_size
=
768
epoch
=
80
log_freq
=
1
0
log_freq
=
1
task_name
=
'm
nli
'
task_name
=
'm
rpc
'
if
task_name
==
'mrpc'
:
data_dir
=
"./data/glue_data/MRPC/"
...
...
@@ -110,7 +123,6 @@ def main():
num_labels
=
3
processor_func
=
MnliProcessor
device_num
=
fluid
.
dygraph
.
parallel
.
Env
().
nranks
use_fixed_gumbel
=
True
train_phase
=
"train"
val_phase
=
"dev"
...
...
@@ -129,7 +141,11 @@ def main():
emb_size
=
emb_size
,
teacher_model
=
teacher_model_dir
,
data_dir
=
data_dir
,
use_fixed_gumbel
=
use_fixed_gumbel
)
use_fixed_gumbel
=
use_fixed_gumbel
,
t
=
1.0
)
logger
.
info
(
"param size = {:.6f}MB"
.
format
(
count_parameters_in_MB
(
model
.
student
.
parameters
())))
learning_rate
=
fluid
.
dygraph
.
CosineDecay
(
2e-2
,
step_per_epoch
,
epoch
)
...
...
@@ -174,7 +190,8 @@ def main():
capacity
=
128
,
use_double_buffer
=
True
,
iterable
=
True
,
return_list
=
True
)
return_list
=
True
,
use_multiprocess
=
True
)
dev_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
capacity
=
128
,
use_double_buffer
=
True
,
...
...
@@ -190,14 +207,18 @@ def main():
best_valid_acc
=
0
for
epoch_id
in
range
(
epoch
):
train_one_epoch
(
model
,
train_loader
,
optimizer
,
epoch_id
,
use_data_parallel
,
log_freq
)
loss
,
acc
=
valid_one_epoch
(
model
,
dev_loader
,
epoch_id
,
log_freq
)
total_loss
,
train_acc
=
train_one_epoch
(
model
,
train_loader
,
optimizer
,
epoch_id
,
use_data_parallel
,
log_freq
)
logger
.
info
(
"train set, total_loss {:.6f}; acc {:.6f};"
.
format
(
total_loss
,
train_acc
))
loss
,
acc
,
t_acc
=
valid_one_epoch
(
model
,
dev_loader
,
epoch_id
,
log_freq
)
if
acc
>
best_valid_acc
:
best_valid_acc
=
acc
logger
.
info
(
"dev set, ce_loss {:.6f};
acc {:.6f}, best_acc {:.6f};"
.
format
(
loss
,
acc
,
best_valid_acc
))
"dev set, ce_loss {:.6f};
teacher_acc: {:.6f}, acc {:.6f}, best_acc {:.6f};"
.
format
(
loss
,
t_acc
,
acc
,
best_valid_acc
))
if
__name__
==
'__main__'
:
...
...
paddleslim/nas/darts/search_space/conv_bert/cls.py
浏览文件 @
9240f31c
...
...
@@ -57,7 +57,7 @@ class AdaBERTClassifier(Layer):
use_fixed_gumbel
=
False
,
gumbel_alphas
=
None
,
fix_emb
=
False
,
t
=
5
.0
):
t
=
1
.0
):
super
(
AdaBERTClassifier
,
self
).
__init__
()
self
.
_n_layer
=
n_layer
self
.
_num_labels
=
num_labels
...
...
@@ -78,8 +78,9 @@ class AdaBERTClassifier(Layer):
self
.
teacher
=
BERTClassifier
(
num_labels
,
task_name
=
task_name
,
model_path
=
self
.
_teacher_model
)
# global setting, will be overwritten when training(about 1% acc loss)
self
.
teacher
.
eval
()
self
.
teacher
.
test
(
self
.
_data_dir
)
self
.
teacher
.
eval
()
print
(
"----------------------finish load teacher model and test----------------------------------------"
)
...
...
@@ -116,49 +117,67 @@ class AdaBERTClassifier(Layer):
def
loss
(
self
,
data_ids
,
epoch
):
labels
=
data_ids
[
4
]
s_logits
=
self
.
student
(
data_ids
,
epoch
)
s_logits
,
s_fea
=
self
.
student
(
data_ids
,
epoch
)
# make sure techer is compute in eval mode
self
.
teacher
.
eval
()
t_total_loss
,
t_logits
,
t_losses
,
t_accs
,
_
,
t_fea
=
self
.
teacher
(
data_ids
)
if
self
.
student
.
training
:
self
.
student
.
train
()
t_logits
[
-
1
].
stop_gradient
=
True
#kd_loss = fluid.layers.mse_loss(s_logits[-1], t_logits[-1])
#kd_loss = fluid.layers.mse_loss(s_fea, t_fea)
t_enc_outputs
,
t_logits
,
t_losses
,
t_accs
,
_
=
self
.
teacher
(
data_ids
)
#kd_loss = fluid.layers.reduce_sum(fluid.layers.square(s_logits[-1] - t_logits[-1]))
t_probs
=
fluid
.
layers
.
softmax
(
t_logits
[
-
1
]
/
self
.
T
)
s_probs
=
fluid
.
layers
.
softmax
(
s_logits
[
-
1
]
/
self
.
T
)
kd_loss
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
cross_entropy
(
input
=
s_probs
,
label
=
t_probs
,
soft_label
=
True
))
#define kd loss
kd_weights
=
[]
for
i
in
range
(
len
(
s_logits
)):
j
=
int
(
np
.
ceil
(
i
*
(
float
(
len
(
t_logits
))
/
len
(
s_logits
))))
kd_weights
.
append
(
t_losses
[
j
].
numpy
())
kd_weights
=
np
.
array
(
kd_weights
)
kd_weights
=
np
.
squeeze
(
kd_weights
)
kd_weights
=
to_variable
(
kd_weights
)
kd_weights
=
fluid
.
layers
.
softmax
(
-
kd_weights
)
kd_losses
=
[]
for
i
in
range
(
len
(
s_logits
)):
j
=
int
(
np
.
ceil
(
i
*
(
float
(
len
(
t_logits
))
/
len
(
s_logits
))))
t_logit
=
t_logits
[
j
]
s_logit
=
s_logits
[
i
]
t_logit
.
stop_gradient
=
True
t_probs
=
fluid
.
layers
.
softmax
(
t_logit
)
# P_j^T
s_probs
=
fluid
.
layers
.
softmax
(
s_logit
/
self
.
T
)
#P_j^S
#kd_loss = -t_probs * fluid.layers.log(s_probs)
kd_loss
=
fluid
.
layers
.
cross_entropy
(
input
=
s_probs
,
label
=
t_probs
,
soft_label
=
True
)
kd_loss
=
fluid
.
layers
.
reduce_mean
(
kd_loss
)
kd_loss
=
fluid
.
layers
.
scale
(
kd_loss
,
scale
=
kd_weights
[
i
])
kd_losses
.
append
(
kd_loss
)
kd_loss
=
fluid
.
layers
.
sum
(
kd_losses
)
#
kd_weights = []
#
for i in range(len(s_logits)):
#
j = int(np.ceil(i * (float(len(t_logits)) / len(s_logits))))
#
kd_weights.append(t_losses[j].numpy())
#
kd_weights = np.array(kd_weights)
#
kd_weights = np.squeeze(kd_weights)
#
kd_weights = to_variable(kd_weights)
#
kd_weights = fluid.layers.softmax(-kd_weights)
#
kd_losses = []
#
for i in range(len(s_logits)):
#
j = int(np.ceil(i * (float(len(t_logits)) / len(s_logits))))
#
t_logit = t_logits[j]
#
s_logit = s_logits[i]
#
t_logit.stop_gradient = True
#
t_probs = fluid.layers.softmax(t_logit) # P_j^T
#
s_probs = fluid.layers.softmax(s_logit / self.T) #P_j^S
#
#kd_loss = -t_probs * fluid.layers.log(s_probs)
#
kd_loss = fluid.layers.cross_entropy(
#
input=s_probs, label=t_probs, soft_label=True)
#
kd_loss = fluid.layers.reduce_mean(kd_loss)
#
kd_loss = fluid.layers.scale(kd_loss, scale=kd_weights[i])
#
kd_losses.append(kd_loss)
#
kd_loss = fluid.layers.sum(kd_losses)
losses
=
[]
for
logit
in
s_logits
:
for
logit
in
[
s_logits
[
-
1
]]
:
ce_loss
,
probs
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
=
logit
,
label
=
labels
,
return_softmax
=
True
)
#print("training: ", self.student.training, probs.numpy())
loss
=
fluid
.
layers
.
mean
(
x
=
ce_loss
)
losses
.
append
(
loss
)
num_seqs
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
probs
,
label
=
labels
,
total
=
num_seqs
)
accuracy
=
fluid
.
layers
.
accuracy
(
input
=
probs
,
label
=
labels
)
ce_loss
=
fluid
.
layers
.
sum
(
losses
)
total_loss
=
(
1
-
self
.
_gamma
)
*
ce_loss
+
self
.
_gamma
*
kd_loss
#total_loss = (1 - self._gamma) * ce_loss + self._gamma * kd_loss
total_loss
=
kd_loss
return
total_loss
,
accuracy
,
ce_loss
,
kd_loss
,
s_logits
return
total_loss
,
accuracy
,
ce_loss
,
kd_loss
,
s_logits
,
t_accs
[
-
1
]
paddleslim/nas/darts/search_space/conv_bert/model/bert.py
浏览文件 @
9240f31c
...
...
@@ -91,6 +91,11 @@ class BertModelLayer(Layer):
output_dim
=
self
.
_hidden_size
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"s_emb_factorization"
))
self
.
_emb_fac_1
=
Linear
(
input_dim
=
self
.
_emb_size
,
output_dim
=
self
.
_hidden_size
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"s_emb_factorization_1"
))
self
.
_encoder
=
EncoderLayer
(
num_labels
=
num_labels
,
n_layer
=
self
.
_n_layer
,
...
...
@@ -103,10 +108,6 @@ class BertModelLayer(Layer):
return
self
.
_src_emb
.
parameters
()
+
self
.
_pos_emb
.
parameters
(
)
+
self
.
_sent_emb
.
parameters
()
def
emb_names
(
self
):
return
self
.
_src_emb
.
parameters
()
+
self
.
_pos_emb
.
parameters
(
)
+
self
.
_sent_emb
.
parameters
()
def
max_flops
(
self
):
return
self
.
_encoder
.
max_flops
...
...
@@ -129,6 +130,6 @@ class BertModelLayer(Layer):
emb_out_1
=
self
.
_emb_fac
(
src_emb_1
)
# (bs, seq_len, hidden_size)
enc_outputs
=
self
.
_encoder
(
emb_out_0
,
emb_out_1
,
epoch
)
enc_outputs
,
fea
=
self
.
_encoder
(
emb_out_0
,
emb_out_1
,
epoch
)
return
enc_outputs
return
enc_outputs
,
fea
paddleslim/nas/darts/search_space/conv_bert/model/transformer_encoder.py
浏览文件 @
9240f31c
...
...
@@ -45,8 +45,8 @@ OPS = {
'avg_pool_3'
:
lambda
n_channel
,
name
:
Pool2D
(
pool_size
=
(
3
,
1
),
pool_padding
=
(
1
,
0
),
pool_type
=
'avg'
),
'max_pool_3'
:
lambda
n_channel
,
name
:
Pool2D
(
pool_size
=
(
3
,
1
),
pool_padding
=
(
1
,
0
),
pool_type
=
'max'
),
'none'
:
lambda
n_channel
,
name
:
Zero
(),
'skip_connect'
:
lambda
n_channel
,
name
:
Identity
(),
'none'
:
lambda
n_channel
,
name
:
Zero
(),
}
...
...
@@ -61,10 +61,10 @@ class MixedOp(fluid.dygraph.Layer):
if
'pool'
in
primitive
:
gama
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1
),
trainable
=
Fals
e
)
trainable
=
Tru
e
)
beta
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0
),
trainable
=
Fals
e
)
trainable
=
Tru
e
)
BN
=
BatchNorm
(
n_channel
,
param_attr
=
gama
,
bias_attr
=
beta
)
op
=
fluid
.
dygraph
.
Sequential
(
op
,
BN
)
ops
.
append
(
op
)
...
...
@@ -125,7 +125,7 @@ class ReluConvBN(fluid.dygraph.Layer):
filter_size
=
[
3
,
1
],
dilation
=
1
,
stride
=
1
,
affine
=
Fals
e
,
affine
=
Tru
e
,
use_cudnn
=
True
,
name
=
None
):
super
(
ReluConvBN
,
self
).
__init__
()
...
...
@@ -210,40 +210,40 @@ class EncoderLayer(Layer):
super
(
EncoderLayer
,
self
).
__init__
()
self
.
_n_layer
=
n_layer
self
.
_hidden_size
=
hidden_size
self
.
_n_channel
=
128
self
.
_n_channel
=
hidden_size
self
.
_steps
=
3
self
.
_n_ops
=
len
(
ConvBN_PRIMITIVES
)
self
.
use_fixed_gumbel
=
use_fixed_gumbel
self
.
stem0
=
fluid
.
dygraph
.
Sequential
(
Conv2D
(
num_channels
=
1
,
num_filters
=
self
.
_n_channel
,
filter_size
=
[
3
,
self
.
_hidden_size
],
padding
=
[
1
,
0
],
param_attr
=
fluid
.
ParamAttr
(
initializer
=
MSRA
()),
bias_attr
=
False
),
BatchNorm
(
num_channels
=
self
.
_n_channel
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1
)),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0
))))
self
.
stem1
=
fluid
.
dygraph
.
Sequential
(
Conv2D
(
num_channels
=
1
,
num_filters
=
self
.
_n_channel
,
filter_size
=
[
3
,
self
.
_hidden_size
],
padding
=
[
1
,
0
],
param_attr
=
fluid
.
ParamAttr
(
initializer
=
MSRA
()),
bias_attr
=
False
),
BatchNorm
(
num_channels
=
self
.
_n_channel
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1
)),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0
))))
#
self.stem0 = fluid.dygraph.Sequential(
#
Conv2D(
#
num_channels=1,
#
num_filters=self._n_channel,
#
filter_size=[3, self._hidden_size],
#
padding=[1, 0],
#
param_attr=fluid.ParamAttr(initializer=MSRA()),
#
bias_attr=False),
#
BatchNorm(
#
num_channels=self._n_channel,
#
param_attr=fluid.ParamAttr(
#
initializer=fluid.initializer.Constant(value=1)),
#
bias_attr=fluid.ParamAttr(
#
initializer=fluid.initializer.Constant(value=0))))
#
self.stem1 = fluid.dygraph.Sequential(
#
Conv2D(
#
num_channels=1,
#
num_filters=self._n_channel,
#
filter_size=[3, self._hidden_size],
#
padding=[1, 0],
#
param_attr=fluid.ParamAttr(initializer=MSRA()),
#
bias_attr=False),
#
BatchNorm(
#
num_channels=self._n_channel,
#
param_attr=fluid.ParamAttr(
#
initializer=fluid.initializer.Constant(value=1)),
#
bias_attr=fluid.ParamAttr(
#
initializer=fluid.initializer.Constant(value=0))))
cells
=
[]
for
i
in
range
(
n_layer
):
...
...
@@ -271,10 +271,10 @@ class EncoderLayer(Layer):
num_channels
=
self
.
_n_channel
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1
),
trainable
=
Fals
e
),
trainable
=
Tru
e
),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0
),
trainable
=
Fals
e
))
trainable
=
Tru
e
))
out
=
Linear
(
self
.
_n_channel
,
num_labels
,
...
...
@@ -311,17 +311,28 @@ class EncoderLayer(Layer):
s0
=
fluid
.
layers
.
unsqueeze
(
enc_input_0
,
[
1
])
s1
=
fluid
.
layers
.
unsqueeze
(
enc_input_1
,
[
1
])
s0
=
self
.
stem0
(
s0
)
s1
=
self
.
stem1
(
s1
)
s0
=
fluid
.
layers
.
transpose
(
s0
,
[
0
,
3
,
2
,
1
])
s1
=
fluid
.
layers
.
transpose
(
s1
,
[
0
,
3
,
2
,
1
])
# s0 = self.stem0(s0)
# s1 = self.stem1(s1)
enc_outputs
=
[]
fea
=
[]
for
i
in
range
(
self
.
_n_layer
):
s0
,
s1
=
s1
,
self
.
_cells
[
i
](
s0
,
s1
,
alphas
)
# (bs, n_channel, seq_len, 1)
tmp
=
self
.
_bns
[
i
](
s1
)
tmp
=
s1
tmp
=
self
.
pool2d_avg
(
tmp
)
tmp
=
fluid
.
layers
.
reshape
(
tmp
,
shape
=
[
-
1
,
0
])
fea
.
append
(
tmp
)
tmp
=
fluid
.
layers
.
dropout
(
x
=
tmp
,
dropout_prob
=
0.1
,
dropout_implementation
=
"upscale_in_train"
)
tmp
=
self
.
_outs
[
i
](
tmp
)
enc_outputs
.
append
(
tmp
)
return
enc_outputs
return
enc_outputs
,
fea
[
-
1
]
paddleslim/teachers/bert/cls.py
浏览文件 @
9240f31c
...
...
@@ -120,12 +120,16 @@ class BERTClassifier(Layer):
test_data_generator
=
processor
.
data_generator
(
batch_size
=
batch_size
,
phase
=
'dev'
,
epoch
=
1
,
shuffle
=
False
)
# test train mode test_acc
self
.
cls_model
.
eval
()
print
(
"test with test mode:..."
)
total_cost
,
final_acc
,
avg_acc
,
total_num_seqs
=
[],
[],
[],
[]
for
batch
in
test_data_generator
():
data_ids
=
create_data
(
batch
)
total_loss
,
_
,
_
,
np_acces
,
np_num_seqs
=
self
.
cls_model
(
data_ids
)
total_loss
,
_
,
_
,
np_acces
,
np_num_seqs
,
fea
=
self
.
cls_model
(
data_ids
)
np_loss
=
total_loss
.
numpy
()
np_acc
=
np_acces
[
-
1
].
numpy
()
...
...
paddleslim/teachers/bert/model/cls.py
浏览文件 @
9240f31c
...
...
@@ -118,4 +118,5 @@ class ClsModelLayer(Layer):
accuracys
.
append
(
accuracy
)
total_loss
=
fluid
.
layers
.
sum
(
losses
)
return
total_loss
,
logits
,
losses
,
accuracys
,
num_seqs
return
total_loss
,
logits
,
losses
,
accuracys
,
num_seqs
,
next_sent_feat
[
-
1
]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录