提交 8e9ab1d1 编写于 作者: W wanghaoshuang

Merge branch 'master' into 'develop'

add distillation demo

See merge request !40
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import math
import logging
import paddle
import argparse
import functools
import numpy as np
import paddle.fluid as fluid
sys.path.append(sys.path[0] + "/../")
import models
import imagenet_reader as reader
from utility import add_arguments, print_arguments
from paddleslim.dist import merge, l2_loss, soft_label_loss, fsp_loss
logging.basicConfig(format='%(asctime)s-%(levelname)s: %(message)s')
_logger = logging.getLogger(__name__)
_logger.setLevel(logging.INFO)
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size', int, 64*4, "Minibatch size.")
add_arg('use_gpu', bool, True, "Whether to use GPU or not.")
add_arg('total_images', int, 1281167, "Training image number.")
add_arg('image_shape', str, "3,224,224", "Input image size")
add_arg('lr', float, 0.1, "The learning rate used to fine-tune pruned model.")
add_arg('lr_strategy', str, "piecewise_decay", "The learning rate decay strategy.")
add_arg('l2_decay', float, 3e-5, "The l2_decay parameter.")
add_arg('momentum_rate', float, 0.9, "The value of momentum_rate.")
add_arg('num_epochs', int, 120, "The number of total epochs.")
add_arg('data', str, "mnist", "Which data to use. 'mnist' or 'imagenet'")
add_arg('log_period', int, 20, "Log period in batches.")
add_arg('model', str, "MobileNet", "Set the network to use.")
add_arg('pretrained_model', str, None, "Whether to use pretrained model.")
add_arg('teacher_model', str, "ResNet50", "Set the teacher network to use.")
add_arg('teacher_pretrained_model', str, "../pretrain/ResNet50_pretrained", "Whether to use pretrained model.")
parser.add_argument('--step_epochs', nargs='+', type=int, default=[30, 60, 90], help="piecewise decay step")
# yapf: enable
model_list = [m for m in dir(models) if "__" not in m]
def piecewise_decay(args):
step = int(math.ceil(float(args.total_images) / args.batch_size))
bd = [step * e for e in args.step_epochs]
lr = [args.lr * (0.1**i) for i in range(len(bd) + 1)]
learning_rate = fluid.layers.piecewise_decay(boundaries=bd, values=lr)
optimizer = fluid.optimizer.Momentum(
learning_rate=learning_rate,
momentum=args.momentum_rate,
regularization=fluid.regularizer.L2Decay(args.l2_decay))
return optimizer
def cosine_decay(args):
step = int(math.ceil(float(args.total_images) / args.batch_size))
learning_rate = fluid.layers.cosine_decay(
learning_rate=args.lr, step_each_epoch=step, epochs=args.num_epochs)
optimizer = fluid.optimizer.Momentum(
learning_rate=learning_rate,
momentum=args.momentum_rate,
regularization=fluid.regularizer.L2Decay(args.l2_decay))
return optimizer
def create_optimizer(args):
if args.lr_strategy == "piecewise_decay":
return piecewise_decay(args)
elif args.lr_strategy == "cosine_decay":
return cosine_decay(args)
def compress(args):
if args.data == "mnist":
import paddle.dataset.mnist as reader
train_reader = reader.train()
val_reader = reader.test()
class_dim = 10
image_shape = "1,28,28"
elif args.data == "imagenet":
import imagenet_reader as reader
train_reader = reader.train()
val_reader = reader.val()
class_dim = 1000
image_shape = "3,224,224"
else:
raise ValueError("{} is not supported.".format(args.data))
image_shape = [int(m) for m in image_shape.split(",")]
assert args.model in model_list, "{} is not in lists: {}".format(
args.model, model_list)
student_program = fluid.Program()
s_startup = fluid.Program()
with fluid.program_guard(student_program, s_startup):
with fluid.unique_name.guard():
image = fluid.layers.data(
name='image', shape=image_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
train_loader = fluid.io.DataLoader.from_generator(
feed_list=[image, label],
capacity=64,
use_double_buffer=True,
iterable=True)
valid_loader = fluid.io.DataLoader.from_generator(
feed_list=[image, label],
capacity=64,
use_double_buffer=True,
iterable=True)
# model definition
model = models.__dict__[args.model]()
out = model.net(input=image, class_dim=class_dim)
cost = fluid.layers.cross_entropy(input=out, label=label)
avg_cost = fluid.layers.mean(x=cost)
acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
#print("="*50+"student_model_params"+"="*50)
#for v in student_program.list_vars():
# print(v.name, v.shape)
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
train_reader = paddle.batch(
train_reader, batch_size=args.batch_size, drop_last=True)
val_reader = paddle.batch(
val_reader, batch_size=args.batch_size, drop_last=True)
val_program = student_program.clone(for_test=True)
places = fluid.cuda_places()
train_loader.set_sample_list_generator(train_reader, places)
valid_loader.set_sample_list_generator(val_reader, place)
teacher_model = models.__dict__[args.teacher_model]()
# define teacher program
teacher_program = fluid.Program()
t_startup = fluid.Program()
teacher_scope = fluid.Scope()
with fluid.scope_guard(teacher_scope):
with fluid.program_guard(teacher_program, t_startup):
with fluid.unique_name.guard():
image = fluid.layers.data(
name='image', shape=image_shape, dtype='float32')
predict = teacher_model.net(image, class_dim=class_dim)
#print("="*50+"teacher_model_params"+"="*50)
#for v in teacher_program.list_vars():
# print(v.name, v.shape)
exe.run(t_startup)
assert args.teacher_pretrained_model and os.path.exists(
args.teacher_pretrained_model
), "teacher_pretrained_model should be set when teacher_model is not None."
def if_exist(var):
return os.path.exists(
os.path.join(args.teacher_pretrained_model, var.name)
) and var.name != 'conv1_weights' and var.name != 'fc_0.w_0' and var.name != 'fc_0.b_0'
fluid.io.load_vars(
exe,
args.teacher_pretrained_model,
main_program=teacher_program,
predicate=if_exist)
data_name_map = {'image': 'image'}
main = merge(
teacher_program,
student_program,
data_name_map,
place,
teacher_scope=teacher_scope)
#print("="*50+"teacher_vars"+"="*50)
#for v in teacher_program.list_vars():
# if '_generated_var' not in v.name and 'fetch' not in v.name and 'feed' not in v.name:
# print(v.name, v.shape)
#return
with fluid.program_guard(main, s_startup):
l2_loss_v = l2_loss("teacher_fc_0.tmp_0", "fc_0.tmp_0", main)
fsp_loss_v = fsp_loss("teacher_res2a_branch2a.conv2d.output.1.tmp_0",
"teacher_res3a_branch2a.conv2d.output.1.tmp_0",
"depthwise_conv2d_1.tmp_0", "conv2d_3.tmp_0",
main)
loss = avg_cost + l2_loss_v + fsp_loss_v
opt = create_optimizer(args)
opt.minimize(loss)
exe.run(s_startup)
build_strategy = fluid.BuildStrategy()
build_strategy.fuse_all_reduce_ops = False
parallel_main = fluid.CompiledProgram(main).with_data_parallel(
loss_name=loss.name, build_strategy=build_strategy)
for epoch_id in range(args.num_epochs):
for step_id, data in enumerate(train_loader):
loss_1, loss_2, loss_3, loss_4 = exe.run(
parallel_main,
feed=data,
fetch_list=[
loss.name, avg_cost.name, l2_loss_v.name, fsp_loss_v.name
])
if step_id % args.log_period == 0:
_logger.info(
"train_epoch {} step {} loss {:.6f}, class loss {:.6f}, l2 loss {:.6f}, fsp loss {:.6f}".
format(epoch_id, step_id, loss_1[0], loss_2[0], loss_3[0],
loss_4[0]))
val_acc1s = []
val_acc5s = []
for step_id, data in enumerate(valid_loader):
val_loss, val_acc1, val_acc5 = exe.run(
val_program,
data,
fetch_list=[avg_cost.name, acc_top1.name, acc_top5.name])
val_acc1s.append(val_acc1)
val_acc5s.append(val_acc5)
if step_id % args.log_period == 0:
_logger.info(
"valid_epoch {} step {} loss {:.6f}, top1 {:.6f}, top5 {:.6f}".
format(epoch_id, step_id, val_loss[0], val_acc1[0],
val_acc5[0]))
_logger.info("epoch {} top1 {:.6f}, top5 {:.6f}".format(
epoch_id, np.mean(val_acc1s), np.mean(val_acc5s)))
def main():
args = parser.parse_args()
print_arguments(args)
compress(args)
if __name__ == '__main__':
main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册