提交 8a62b6fe 编写于 作者: B baiyfbupt

Deployed ab60054 with MkDocs version: 1.0.4

上级 fc74b36d
......@@ -104,7 +104,7 @@
</li>
<li class="">
<a class="" href="/api/search_space/">搜索空间</a>
<a class="" href="/api/search_space.md">搜索空间</a>
</li>
<li class="">
......
......@@ -111,7 +111,7 @@
</li>
<li class="">
<a class="" href="../../api/search_space/">搜索空间</a>
<a class="" href="../../api/search_space.md">搜索空间</a>
</li>
<li class="">
......
......@@ -123,7 +123,7 @@
</li>
<li class="">
<a class="" href="../search_space/">搜索空间</a>
<a class="" href="../search_space.md">搜索空间</a>
</li>
<li class="">
......@@ -178,7 +178,7 @@
<h2 id="flops">FLOPs<a class="headerlink" href="#flops" title="Permanent link">#</a></h2>
<dl>
<dt>paddleslim.analysis.flops(program, detail=False) <a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/analysis/flops.py">源代码</a></dt>
<dt>paddleslim.analysis.flops(program, detail=False) <a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/analysis/flops.py">[源代码]</a></dt>
<dd>
<p>获得指定网络的浮点运算次数(FLOPs)。</p>
</dd>
......@@ -314,8 +314,12 @@
</td></tr></table>
<h2 id="model_size">model_size<a class="headerlink" href="#model_size" title="Permanent link">#</a></h2>
<p>paddleslim.analysis.model_size(program) <a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/analysis/model_size.py">源代码</a></p>
<dl>
<dt>paddleslim.analysis.model_size(program) <a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/analysis/model_size.py">[源代码]</a></dt>
<dd>
<p>获得指定网络的参数数量。</p>
</dd>
</dl>
<p><strong>参数:</strong></p>
<ul>
<li><strong>program(paddle.fluid.Program)</strong> - 待分析的目标网络。更多关于Program的介绍请参考:<a href="https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/fluid_cn/Program_cn.html#program">Program概念介绍</a></li>
......@@ -419,7 +423,7 @@
<h2 id="tablelatencyevaluator">TableLatencyEvaluator<a class="headerlink" href="#tablelatencyevaluator" title="Permanent link">#</a></h2>
<dl>
<dt>paddleslim.analysis.TableLatencyEvaluator(table_file, delimiter=",") <a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/analysis/latency.py">源代码</a></dt>
<dt>paddleslim.analysis.TableLatencyEvaluator(table_file, delimiter=",") <a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/analysis/latency.py">[源代码]</a></dt>
<dd>
<p>基于硬件延时表的模型延时评估器。</p>
</dd>
......@@ -427,7 +431,7 @@
<p><strong>参数:</strong></p>
<ul>
<li>
<p><strong>table_file(str)</strong> - 所使用的延时评估表的绝对路径。关于演示评估表格式请参考:<a href="../paddleslim/analysis/table_latency.md">PaddleSlim硬件延时评估表格式</a></p>
<p><strong>table_file(str)</strong> - 所使用的延时评估表的绝对路径。关于演示评估表格式请参考:<a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/docs/table_latency.md">PaddleSlim硬件延时评估表格式</a></p>
</li>
<li>
<p><strong>delimiter(str)</strong> - 硬件延时评估表中,操作信息之前所使用的分割符,默认为英文字符逗号。</p>
......@@ -438,7 +442,7 @@
<li><strong>Evaluator</strong> - 硬件延时评估器的实例。</li>
</ul>
<dl>
<dt>paddleslim.analysis.TableLatencyEvaluator.latency(graph) <a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/analysis/latency.py">源代码</a></dt>
<dt>paddleslim.analysis.TableLatencyEvaluator.latency(graph) <a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/analysis/latency.py">[源代码]</a></dt>
<dd>
<p>获得指定网络的预估延时。</p>
</dd>
......
......@@ -111,7 +111,7 @@
</li>
<li class="">
<a class="" href="../search_space/">搜索空间</a>
<a class="" href="../search_space.md">搜索空间</a>
</li>
<li class="">
......@@ -187,7 +187,7 @@
<h2 id="_5"><a href="">小模型结构搜索</a><a class="headerlink" href="#_5" title="Permanent link">#</a></h2>
<ul>
<li><a href="../nas_api/">nas API</a></li>
<li><a href="../search_space/">SearchSpace</a></li>
<li><a href="./search_space.md">SearchSpace</a></li>
</ul>
</div>
......
此差异已折叠。
......@@ -129,7 +129,7 @@
</li>
<li class="">
<a class="" href="../search_space/">搜索空间</a>
<a class="" href="../search_space.md">搜索空间</a>
</li>
<li class="">
......@@ -184,7 +184,7 @@
<h2 id="pruner">Pruner<a class="headerlink" href="#pruner" title="Permanent link">#</a></h2>
<dl>
<dt>paddleslim.prune.Pruner(criterion="l1_norm")<a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/pruner.py#L28">源代码</a></dt>
<dt>paddleslim.prune.Pruner(criterion="l1_norm")<a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/pruner.py#L28">[源代码]</a></dt>
<dd>
<p>对卷积网络的通道进行一次剪裁。剪裁一个卷积层的通道,是指剪裁该卷积层输出的通道。卷积层的权重形状为<code>[output_channel, input_channel, kernel_size, kernel_size]</code>,通过剪裁该权重的第一纬度达到剪裁输出通道数的目的。</p>
</dd>
......@@ -202,7 +202,7 @@
</td></tr></table>
<dl>
<dt>paddleslim.prune.Pruner.prune(program, scope, params, ratios, place=None, lazy=False, only_graph=False, param_backup=False, param_shape_backup=False)<a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/pruner.py#L36">源代码</a></dt>
<dt>paddleslim.prune.Pruner.prune(program, scope, params, ratios, place=None, lazy=False, only_graph=False, param_backup=False, param_shape_backup=False)<a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/pruner.py#L36">[源代码]</a></dt>
<dd>
<p>对目标网络的一组卷积层的权重进行裁剪。</p>
</dd>
......@@ -404,7 +404,7 @@
<hr />
<h2 id="sensitivity">sensitivity<a class="headerlink" href="#sensitivity" title="Permanent link">#</a></h2>
<dl>
<dt>paddleslim.prune.sensitivity(program, place, param_names, eval_func, sensitivities_file=None, pruned_ratios=None) <a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/sensitive.py#L34">源代码</a></dt>
<dt>paddleslim.prune.sensitivity(program, place, param_names, eval_func, sensitivities_file=None, pruned_ratios=None) <a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/sensitive.py#L34">[源代码]</a></dt>
<dd>
<p>计算网络中每个卷积层的敏感度。每个卷积层的敏感度信息统计方法为:依次剪掉当前卷积层不同比例的输出通道数,在测试集上计算剪裁后的精度损失。得到敏感度信息后,可以通过观察或其它方式确定每层卷积的剪裁率。</p>
</dd>
......@@ -653,7 +653,7 @@
<h2 id="merge_sensitive">merge_sensitive<a class="headerlink" href="#merge_sensitive" title="Permanent link">#</a></h2>
<dl>
<dt>paddleslim.prune.merge_sensitive(sensitivities)<a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/sensitive.py#L161">源代码</a></dt>
<dt>paddleslim.prune.merge_sensitive(sensitivities)<a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/sensitive.py#L161">[源代码]</a></dt>
<dd>
<p>合并多个敏感度信息。</p>
</dd>
......@@ -690,7 +690,7 @@
<p>示例:</p>
<h2 id="load_sensitivities">load_sensitivities<a class="headerlink" href="#load_sensitivities" title="Permanent link">#</a></h2>
<dl>
<dt>paddleslim.prune.load_sensitivities(sensitivities_file)<a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/sensitive.py#L184">源代码</a></dt>
<dt>paddleslim.prune.load_sensitivities(sensitivities_file)<a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/sensitive.py#L184">[源代码]</a></dt>
<dd>
<p>从文件中加载敏感度信息。</p>
</dd>
......@@ -706,7 +706,7 @@
<p>示例:</p>
<h2 id="get_ratios_by_loss">get_ratios_by_loss<a class="headerlink" href="#get_ratios_by_loss" title="Permanent link">#</a></h2>
<dl>
<dt>paddleslim.prune.get_ratios_by_loss(sensitivities, loss)<a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/sensitive.py#L206">源代码</a></dt>
<dt>paddleslim.prune.get_ratios_by_loss(sensitivities, loss)<a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/sensitive.py#L206">[源代码]</a></dt>
<dd>
<p>根据敏感度和精度损失阈值计算出一组剪切率。对于参数<code>w</code>, 其剪裁率为使精度损失低于<code>loss</code>的最大剪裁率。</p>
</dd>
......
......@@ -129,7 +129,7 @@
</li>
<li class="">
<a class="" href="../search_space/">搜索空间</a>
<a class="" href="../search_space.md">搜索空间</a>
</li>
<li class="">
......@@ -254,13 +254,13 @@
</ul>
<div class="admonition note">
<p class="admonition-title">注意事项</p>
</div>
<ul>
<li>此接口会改变<code>program</code>结构,并且可能增加一些<code>persistable</code>的变量,所以加载模型参数时请注意和相应的<code>program</code>对应。</li>
<li>此接口底层经历了<code>fluid.Program</code>-&gt; <code>fluid.framework.IrGraph</code>-&gt;<code>fluid.Program</code>的转变,在<code>fluid.framework.IrGraph</code>中没有<code>Parameter</code>的概念,<code>Variable</code>只有<code>persistable</code><code>not persistable</code>的区别,所以在保存和加载参数时,请使用<code>fluid.io.save_persistables</code><code>fluid.io.load_persistables</code>接口。</li>
<li>由于此接口会根据<code>program</code>的结构和量化配置来对<code>program</code>添加op,所以<code>Paddle</code>中一些通过<code>fuse op</code>来加速训练的策略不能使用。已知以下策略在使用量化时必须设为<code>False</code><code>fuse_all_reduce_ops, sync_batch_norm</code></li>
<li>如果传入的<code>program</code>中存在和任何op都没有连接的<code>Variable</code>,则会在量化的过程中被优化掉。</li>
</ul>
</div>
<h2 id="convert">convert<a class="headerlink" href="#convert" title="Permanent link">#</a></h2>
<dl>
<dt>paddleslim.quant.convert(program, place, config, scope=None, save_int8=False)<a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/quant/quanter.py">[源代码]</a></dt>
......@@ -283,8 +283,8 @@
</ul>
<div class="admonition note">
<p class="admonition-title">注意事项</p>
</div>
<p>因为该接口会对<code>op</code><code>Variable</code>做相应的删除和修改,所以此接口只能在训练完成之后调用。如果想转化训练的中间模型,可加载相应的参数之后再使用此接口。</p>
</div>
<p><strong>代码示例</strong></p>
<table class="codehilitetable"><tr><td class="linenos"><div class="linenodiv"><pre><span></span> 1
2
......@@ -388,8 +388,8 @@
<p>无。</p>
<div class="admonition note">
<p class="admonition-title">注意事项</p>
</div>
<p>因为该接口会收集校正数据的所有的激活值,所以使用的校正图片不能太多。<code>'KL'</code>散度的计算也比较耗时。</p>
</div>
<p><strong>代码示例</strong></p>
<blockquote>
<p>注: 此示例不能直接运行,因为需要加载<code>${model_dir}</code>下的模型,所以不能直接运行。</p>
......
......@@ -129,7 +129,7 @@
</li>
<li class="">
<a class="" href="../search_space/">搜索空间</a>
<a class="" href="../search_space.md">搜索空间</a>
</li>
<li class="">
......
......@@ -129,7 +129,7 @@
</li>
<li class="">
<a class="" href="api/search_space/">搜索空间</a>
<a class="" href="api/search_space.md">搜索空间</a>
</li>
<li class="">
......@@ -293,5 +293,5 @@
<!--
MkDocs version : 1.0.4
Build Date UTC : 2020-01-09 05:24:41
Build Date UTC : 2020-01-09 06:39:56
-->
......@@ -151,7 +151,7 @@
</li>
<li class="">
<a class="" href="../api/search_space/">搜索空间</a>
<a class="" href="../api/search_space.md">搜索空间</a>
</li>
<li class="">
......
......@@ -104,7 +104,7 @@
</li>
<li class="">
<a class="" href="./api/search_space/">搜索空间</a>
<a class="" href="./api/search_space.md">搜索空间</a>
</li>
<li class="">
......
此差异已折叠。
......@@ -61,8 +61,8 @@
<changefreq>daily</changefreq>
</url>
<url>
<loc>None</loc>
<lastmod>2020-01-09</lastmod>
<loc></loc>
<changefreq>daily</changefreq>
</url>
<url>
......
无法预览此类型文件
......@@ -111,7 +111,7 @@
</li>
<li class="">
<a class="" href="../api/search_space/">搜索空间</a>
<a class="" href="../api/search_space.md">搜索空间</a>
</li>
<li class=" current">
......@@ -322,7 +322,7 @@
<a href="../algo/algo/" class="btn btn-neutral float-right" title="算法原理">Next <span class="icon icon-circle-arrow-right"></span></a>
<a href="../api/search_space/" class="btn btn-neutral" title="搜索空间"><span class="icon icon-circle-arrow-left"></span> Previous</a>
<a href="../api/nas_api/" class="btn btn-neutral" title="SA搜索"><span class="icon icon-circle-arrow-left"></span> Previous</a>
</div>
......@@ -350,7 +350,7 @@
<a href="https://github.com/PaddlePaddle/PaddleSlim/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
<span><a href="../api/search_space/" style="color: #fcfcfc;">&laquo; Previous</a></span>
<span><a href="../api/nas_api/" style="color: #fcfcfc;">&laquo; Previous</a></span>
<span style="margin-left: 15px"><a href="../algo/algo/" style="color: #fcfcfc">Next &raquo;</a></span>
......
......@@ -111,7 +111,7 @@
</li>
<li class="">
<a class="" href="../../api/search_space/">搜索空间</a>
<a class="" href="../../api/search_space.md">搜索空间</a>
</li>
<li class="">
......
......@@ -134,7 +134,7 @@
</li>
<li class="">
<a class="" href="../../api/search_space/">搜索空间</a>
<a class="" href="../../api/search_space.md">搜索空间</a>
</li>
<li class="">
......
......@@ -123,7 +123,7 @@
</li>
<li class="">
<a class="" href="../../api/search_space/">搜索空间</a>
<a class="" href="../../api/search_space.md">搜索空间</a>
</li>
<li class="">
......@@ -181,7 +181,7 @@
<h2 id="_2">接口介绍<a class="headerlink" href="#_2" title="Permanent link">#</a></h2>
<p>请参考。</p>
<h3 id="1">1. 配置搜索空间<a class="headerlink" href="#1" title="Permanent link">#</a></h3>
<p>详细的搜索空间配置可以参考<a href='../../../paddleslim/nas/nas_api.md'>神经网络搜索API文档</a>
<p>详细的搜索空间配置可以参考<a href="https://paddlepaddle.github.io/PaddleSlim/api/nas_api/">神经网络搜索API文档</a>
<table class="codehilitetable"><tr><td class="linenos"><div class="linenodiv"><pre><span></span>1</pre></div></td><td class="code"><div class="codehilite"><pre><span></span><span class="n">config</span> <span class="o">=</span> <span class="p">[(</span><span class="s1">&#39;MobileNetV2Space&#39;</span><span class="p">)]</span>
</pre></div>
</td></tr></table></p>
......
......@@ -111,7 +111,7 @@
</li>
<li class="">
<a class="" href="../../api/search_space/">搜索空间</a>
<a class="" href="../../api/search_space.md">搜索空间</a>
</li>
<li class="">
......
......@@ -125,7 +125,7 @@
</li>
<li class="">
<a class="" href="../../api/search_space/">搜索空间</a>
<a class="" href="../../api/search_space.md">搜索空间</a>
</li>
<li class="">
......@@ -181,7 +181,7 @@
<h1 id="_1">在线量化示例<a class="headerlink" href="#_1" title="Permanent link">#</a></h1>
<p>本示例介绍如何使用在线量化接口,来对训练好的分类模型进行量化, 可以减少模型的存储空间和显存占用。</p>
<h2 id="_2">接口介绍<a class="headerlink" href="#_2" title="Permanent link">#</a></h2>
<p>请参考 <a href='../../../paddleslim/quant/quantization_api_doc.md'>量化API文档</a></p>
<p>请参考 <a href="https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/">量化API文档</a></p>
<h2 id="_3">分类模型的离线量化流程<a class="headerlink" href="#_3" title="Permanent link">#</a></h2>
<h3 id="1">1. 配置量化参数<a class="headerlink" href="#1" title="Permanent link">#</a></h3>
<table class="codehilitetable"><tr><td class="linenos"><div class="linenodiv"><pre><span></span> 1
......
......@@ -125,7 +125,7 @@
</li>
<li class="">
<a class="" href="../../api/search_space/">搜索空间</a>
<a class="" href="../../api/search_space.md">搜索空间</a>
</li>
<li class="">
......@@ -179,18 +179,18 @@
<div class="section">
<h1 id="embedding">Embedding量化示例<a class="headerlink" href="#embedding" title="Permanent link">#</a></h1>
<p>本示例介绍如何使用Embedding量化的接口 <a href="">paddleslim.quant.quant_embedding</a><code>quant_embedding</code>接口将网络中的Embedding参数从<code>float32</code>类型量化到 <code>8-bit</code>整数类型,在几乎不损失模型精度的情况下减少模型的存储空间和显存占用。</p>
<p>接口介绍请参考 <a href='../../../paddleslim/quant/quantization_api_doc.md'>量化API文档</a></p>
<p>本示例介绍如何使用Embedding量化的接口 <a href="https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/">paddleslim.quant.quant_embedding</a><code>quant_embedding</code>接口将网络中的Embedding参数从<code>float32</code>类型量化到 <code>8-bit</code>整数类型,在几乎不损失模型精度的情况下减少模型的存储空间和显存占用。</p>
<p>接口介绍请参考 <a href="https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/">量化API文档</a></p>
<p>该接口对program的修改:</p>
<p>量化前:</p>
<p align="center">
<img src="./image/before.png" height=200 width=100 hspace='10'/> <br />
<img src="https://raw.githubusercontent.com/PaddlePaddle/PaddleSlim/develop/demo/quant/quant_embedding/image/before.png" height=200 width=100 hspace='10'/> <br />
<strong>图1:量化前的模型结构</strong>
</p>
<p>量化后:</p>
<p align="center">
<img src="./image/after.png" height=300 width=300 hspace='10'/> <br />
<img src="https://raw.githubusercontent.com/PaddlePaddle/PaddleSlim/develop/demo/quant/quant_embedding/image/after.png" height=300 width=300 hspace='10'/> <br />
<strong>图2: 量化后的模型结构</strong>
</p>
......
......@@ -125,7 +125,7 @@
</li>
<li class="">
<a class="" href="../../api/search_space/">搜索空间</a>
<a class="" href="../../api/search_space.md">搜索空间</a>
</li>
<li class="">
......@@ -181,7 +181,7 @@
<h1 id="_1">离线量化示例<a class="headerlink" href="#_1" title="Permanent link">#</a></h1>
<p>本示例介绍如何使用离线量化接口<code>paddleslim.quant.quant_post</code>来对训练好的分类模型进行离线量化, 该接口无需对模型进行训练就可得到量化模型,减少模型的存储空间和显存占用。</p>
<h2 id="_2">接口介绍<a class="headerlink" href="#_2" title="Permanent link">#</a></h2>
<p>请参考 <a href='../../../paddleslim/quant/quantization_api_doc.md'>量化API文档</a></p>
<p>请参考 <a href="https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/">量化API文档</a></p>
<h2 id="_3">分类模型的离线量化流程<a class="headerlink" href="#_3" title="Permanent link">#</a></h2>
<h3 id="_4">准备数据<a class="headerlink" href="#_4" title="Permanent link">#</a></h3>
<p>在当前文件夹下创建<code>data</code>文件夹,将<code>imagenet</code>数据集解压在<code>data</code>文件夹下,解压后<code>data</code>文件夹下应包含以下文件:
......@@ -200,7 +200,7 @@
</td></tr></table>
转化之后的模型存储在<code>inference_model/MobileNet/</code>文件夹下,可看到该文件夹下有<code>'model'</code>, <code>'weights'</code>两个文件。</p>
<h3 id="_7">离线量化<a class="headerlink" href="#_7" title="Permanent link">#</a></h3>
<p>接下来对导出的模型文件进行离线量化,离线量化的脚本为<a href="./quant_post.py">quant_post.py</a>,脚本中使用接口<code>paddleslim.quant.quant_post</code>对模型进行离线量化。运行命令为:
<p>接下来对导出的模型文件进行离线量化,离线量化的脚本为<a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/demo/quant/quant_post/quant_post.py">quant_post.py</a>,脚本中使用接口<code>paddleslim.quant.quant_post</code>对模型进行离线量化。运行命令为:
<table class="codehilitetable"><tr><td class="linenos"><div class="linenodiv"><pre><span></span>1</pre></div></td><td class="code"><div class="codehilite"><pre><span></span><span class="n">python</span> <span class="n">quant_post</span><span class="p">.</span><span class="n">py</span> <span class="c1">--model_path ./inference_model/MobileNet --save_path ./quant_model_train/MobileNet --model_filename model --params_filename weights</span>
</pre></div>
</td></tr></table></p>
......@@ -215,7 +215,7 @@
<p>使用的量化算法为<code>'KL'</code>, 使用训练集中的160张图片进行量化参数的校正。</p>
</blockquote>
<h3 id="_8">测试精度<a class="headerlink" href="#_8" title="Permanent link">#</a></h3>
<p>使用<a href="./eval.py">eval.py</a>脚本对量化前后的模型进行测试,得到模型的分类精度进行对比。</p>
<p>使用<a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/demo/quant/quant_post/eval.py">eval.py</a>脚本对量化前后的模型进行测试,得到模型的分类精度进行对比。</p>
<p>首先测试量化前的模型的精度,运行以下命令:
<table class="codehilitetable"><tr><td class="linenos"><div class="linenodiv"><pre><span></span>1</pre></div></td><td class="code"><div class="codehilite"><pre><span></span><span class="n">python</span> <span class="n">eval</span><span class="p">.</span><span class="n">py</span> <span class="c1">--model_path ./inference_model/MobileNet --model_name model --params_name weights</span>
</pre></div>
......
......@@ -111,7 +111,7 @@
</li>
<li class="">
<a class="" href="../../api/search_space/">搜索空间</a>
<a class="" href="../../api/search_space.md">搜索空间</a>
</li>
<li class="">
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册