Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
83d5d128
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
83d5d128
编写于
4月 29, 2020
作者:
L
Liufang Sang
提交者:
GitHub
4月 29, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update quant_aware and quant_post for paddle version 2.0 (#244)
上级
a521a961
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
38 addition
and
12 deletion
+38
-12
paddleslim/quant/quanter.py
paddleslim/quant/quanter.py
+33
-10
tests/test_quant_post.py
tests/test_quant_post.py
+5
-2
未找到文件。
paddleslim/quant/quanter.py
浏览文件 @
83d5d128
...
@@ -46,8 +46,8 @@ ACTIVATION_QUANTIZATION_TYPES_TENSORRT = [
...
@@ -46,8 +46,8 @@ ACTIVATION_QUANTIZATION_TYPES_TENSORRT = [
VALID_DTYPES
=
[
'int8'
]
VALID_DTYPES
=
[
'int8'
]
TRANSFORM_PASS_OP_TYPES
=
QuantizationTransformPass
.
_supported_quantizable_op_type
TRANSFORM_PASS_OP_TYPES
=
QuantizationTransformPass
.
_supported_quantizable_op_type
QUANT_DEQUANT_PASS_OP_TYPES
=
AddQuantDequantPass
.
_supported_quantizable_op_type
+
\
QUANT_DEQUANT_PASS_OP_TYPES
=
AddQuantDequantPass
.
_supported_quantizable_op_type
AddQuantDequantPass
.
_activation_type
TENSORRT_OP_TYPES
=
[
TENSORRT_OP_TYPES
=
[
'mul'
,
'conv2d'
,
'pool2d'
,
'depthwise_conv2d'
,
'elementwise_add'
,
'mul'
,
'conv2d'
,
'pool2d'
,
'depthwise_conv2d'
,
'elementwise_add'
,
'leaky_relu'
'leaky_relu'
...
@@ -230,9 +230,12 @@ def quant_aware(program, place, config=None, scope=None, for_test=False):
...
@@ -230,9 +230,12 @@ def quant_aware(program, place, config=None, scope=None, for_test=False):
def
quant_post
(
executor
,
def
quant_post
(
executor
,
model_dir
,
model_dir
,
quantize_model_path
,
quantize_model_path
,
sample_generator
,
batch_generator
=
None
,
sample_generator
=
None
,
model_filename
=
None
,
model_filename
=
None
,
params_filename
=
None
,
params_filename
=
None
,
save_model_filename
=
'__model__'
,
save_params_filename
=
'__params__'
,
batch_size
=
16
,
batch_size
=
16
,
batch_nums
=
None
,
batch_nums
=
None
,
scope
=
None
,
scope
=
None
,
...
@@ -241,6 +244,8 @@ def quant_post(executor,
...
@@ -241,6 +244,8 @@ def quant_post(executor,
is_full_quantize
=
False
,
is_full_quantize
=
False
,
weight_bits
=
8
,
weight_bits
=
8
,
activation_bits
=
8
,
activation_bits
=
8
,
activation_quantize_type
=
'range_abs_max'
,
weight_quantize_type
=
'channel_wise_abs_max'
,
is_use_cache_file
=
False
,
is_use_cache_file
=
False
,
cache_dir
=
"./temp_post_training"
):
cache_dir
=
"./temp_post_training"
):
"""
"""
...
@@ -257,6 +262,10 @@ def quant_post(executor,
...
@@ -257,6 +262,10 @@ def quant_post(executor,
are under the path.
are under the path.
quantize_model_path(str): The path to save quantized model using api
quantize_model_path(str): The path to save quantized model using api
``fluid.io.save_inference_model``.
``fluid.io.save_inference_model``.
batch_generator(Python Generator): The batch generator provides
calibrate data for DataLoader, and it returns a batch every
time. For sample_generator and batch_generator, only one
can be set. Beisdes, batch_generator supports lod tensor.
sample_generator(Python Generator): The sample generator provides
sample_generator(Python Generator): The sample generator provides
calibrate data for DataLoader, and it only returns a sample every time.
calibrate data for DataLoader, and it only returns a sample every time.
model_filename(str, optional): The name of model file. If parameters
model_filename(str, optional): The name of model file. If parameters
...
@@ -265,6 +274,9 @@ def quant_post(executor,
...
@@ -265,6 +274,9 @@ def quant_post(executor,
When all parameters are saved in a single file, set it
When all parameters are saved in a single file, set it
as filename. If parameters are saved in separate files,
as filename. If parameters are saved in separate files,
set it as 'None'. Default : 'None'.
set it as 'None'. Default : 'None'.
save_model_filename(str): The name of model file to save the quantized inference program. Default: '__model__'.
save_params_filename(str): The name of file to save all related parameters.
If it is set None, parameters will be saved in separate files. Default: '__params__'.
batch_size(int, optional): The batch size of DataLoader, default is 16.
batch_size(int, optional): The batch size of DataLoader, default is 16.
batch_nums(int, optional): If batch_nums is not None, the number of calibrate
batch_nums(int, optional): If batch_nums is not None, the number of calibrate
data is 'batch_size*batch_nums'. If batch_nums is None, use all data
data is 'batch_size*batch_nums'. If batch_nums is None, use all data
...
@@ -279,6 +291,15 @@ def quant_post(executor,
...
@@ -279,6 +291,15 @@ def quant_post(executor,
"mul"].
"mul"].
weight_bits(int, optional): quantization bit number for weights.
weight_bits(int, optional): quantization bit number for weights.
activation_bits(int): quantization bit number for activation.
activation_bits(int): quantization bit number for activation.
activation_quantize_type(str): quantization type for activation,
now support 'range_abs_max', 'moving_average_abs_max' and 'abs_max'.
This parameter only specifies the fake ops in quantized model.
If it is 'range_abs_max' or 'moving_average_abs_max', we save the scale
obtained by post training quantization in fake ops. If it
is 'abs_max', the scale will not be saved in fake ops.
weight_quantize_type(str): quantization type for weights,
support 'abs_max' and 'channel_wise_abs_max'. Compared to 'abs_max',
the model accuracy is usually higher when using 'channel_wise_abs_max'.
is_full_quantize(bool): if True, apply quantization to all supported quantizable op type.
is_full_quantize(bool): if True, apply quantization to all supported quantizable op type.
If False, only apply quantization to the input quantizable_op_type. Default is False.
If False, only apply quantization to the input quantizable_op_type. Default is False.
is_use_cache_file(bool): If False, all temp data will be saved in memory. If True,
is_use_cache_file(bool): If False, all temp data will be saved in memory. If True,
...
@@ -291,6 +312,7 @@ def quant_post(executor,
...
@@ -291,6 +312,7 @@ def quant_post(executor,
post_training_quantization
=
PostTrainingQuantization
(
post_training_quantization
=
PostTrainingQuantization
(
executor
=
executor
,
executor
=
executor
,
sample_generator
=
sample_generator
,
sample_generator
=
sample_generator
,
batch_generator
=
batch_generator
,
model_dir
=
model_dir
,
model_dir
=
model_dir
,
model_filename
=
model_filename
,
model_filename
=
model_filename
,
params_filename
=
params_filename
,
params_filename
=
params_filename
,
...
@@ -302,10 +324,15 @@ def quant_post(executor,
...
@@ -302,10 +324,15 @@ def quant_post(executor,
is_full_quantize
=
is_full_quantize
,
is_full_quantize
=
is_full_quantize
,
weight_bits
=
weight_bits
,
weight_bits
=
weight_bits
,
activation_bits
=
activation_bits
,
activation_bits
=
activation_bits
,
activation_quantize_type
=
activation_quantize_type
,
weight_quantize_type
=
weight_quantize_type
,
is_use_cache_file
=
is_use_cache_file
,
is_use_cache_file
=
is_use_cache_file
,
cache_dir
=
cache_dir
)
cache_dir
=
cache_dir
)
post_training_quantization
.
quantize
()
post_training_quantization
.
quantize
()
post_training_quantization
.
save_quantized_model
(
quantize_model_path
)
post_training_quantization
.
save_quantized_model
(
quantize_model_path
,
model_filename
=
save_model_filename
,
params_filename
=
save_params_filename
)
def
convert
(
program
,
place
,
config
=
None
,
scope
=
None
,
save_int8
=
False
):
def
convert
(
program
,
place
,
config
=
None
,
scope
=
None
,
save_int8
=
False
):
...
@@ -338,10 +365,6 @@ def convert(program, place, config=None, scope=None, save_int8=False):
...
@@ -338,10 +365,6 @@ def convert(program, place, config=None, scope=None, save_int8=False):
_logger
.
info
(
"convert config {}"
.
format
(
config
))
_logger
.
info
(
"convert config {}"
.
format
(
config
))
test_graph
=
IrGraph
(
core
.
Graph
(
program
.
desc
),
for_test
=
True
)
test_graph
=
IrGraph
(
core
.
Graph
(
program
.
desc
),
for_test
=
True
)
support_op_types
=
[]
for
op
in
config
[
'quantize_op_types'
]:
if
op
in
QuantizationFreezePass
.
_supported_quantizable_op_type
:
support_op_types
.
append
(
op
)
# Freeze the graph after training by adjusting the quantize
# Freeze the graph after training by adjusting the quantize
# operators' order for the inference.
# operators' order for the inference.
...
@@ -350,8 +373,8 @@ def convert(program, place, config=None, scope=None, save_int8=False):
...
@@ -350,8 +373,8 @@ def convert(program, place, config=None, scope=None, save_int8=False):
place
=
place
,
place
=
place
,
weight_bits
=
config
[
'weight_bits'
],
weight_bits
=
config
[
'weight_bits'
],
activation_bits
=
config
[
'activation_bits'
],
activation_bits
=
config
[
'activation_bits'
],
weight_quantize_type
=
config
[
'weight_quantize_type'
]
,
weight_quantize_type
=
config
[
'weight_quantize_type'
]
)
quantizable_op_type
=
support_op_types
)
freeze_pass
.
apply
(
test_graph
)
freeze_pass
.
apply
(
test_graph
)
freezed_program
=
test_graph
.
to_program
()
freezed_program
=
test_graph
.
to_program
()
...
...
tests/test_quant_post.py
浏览文件 @
83d5d128
...
@@ -101,12 +101,15 @@ class TestQuantAwareCase1(unittest.TestCase):
...
@@ -101,12 +101,15 @@ class TestQuantAwareCase1(unittest.TestCase):
exe
,
exe
,
'./test_quant_post'
,
'./test_quant_post'
,
'./test_quant_post_inference'
,
'./test_quant_post_inference'
,
paddle
.
dataset
.
mnist
.
test
(),
sample_generator
=
paddle
.
dataset
.
mnist
.
test
(),
model_filename
=
'model'
,
model_filename
=
'model'
,
params_filename
=
'params'
,
params_filename
=
'params'
,
batch_nums
=
10
)
batch_nums
=
10
)
quant_post_prog
,
feed_target_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
quant_post_prog
,
feed_target_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
dirname
=
'./test_quant_post_inference'
,
executor
=
exe
)
dirname
=
'./test_quant_post_inference'
,
executor
=
exe
,
model_filename
=
'__model__'
,
params_filename
=
'__params__'
)
top1_2
,
top5_2
=
test
(
quant_post_prog
,
fetch_targets
)
top1_2
,
top5_2
=
test
(
quant_post_prog
,
fetch_targets
)
print
(
"before quantization: top1: {}, top5: {}"
.
format
(
top1_1
,
top5_1
))
print
(
"before quantization: top1: {}, top5: {}"
.
format
(
top1_1
,
top5_1
))
print
(
"after quantization: top1: {}, top5: {}"
.
format
(
top1_2
,
top5_2
))
print
(
"after quantization: top1: {}, top5: {}"
.
format
(
top1_2
,
top5_2
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录