未验证 提交 77bfa3ad 编写于 作者: C ceci3 提交者: GitHub

update nas quick start (#584)

上级 4107167f
......@@ -25,7 +25,9 @@
请确认已正确安装Paddle,导入需要的依赖包。
```python
import paddle
import paddle.fluid as fluid
import paddle.nn as nn
import paddle.nn.functional as F
import paddle.static as static
import paddleslim as slim
import numpy as np
```
......@@ -38,60 +40,78 @@ sanas = slim.nas.SANAS(configs=[('MobileNetV2Space')], server_addr=("", 8337), s
## 3. 构建网络
根据传入的网络结构构造训练program和测试program。
```python
paddle.enable_static()
def build_program(archs):
train_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
label = fluid.data(name='label', shape=[None, 1], dtype='int64')
train_program = static.Program()
startup_program = static.Program()
with static.program_guard(train_program, startup_program):
data = static.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
label = static.data(name='label', shape=[None, 1], dtype='int64')
gt = paddle.reshape(label, [-1, 1])
output = archs(data)
output = fluid.layers.fc(input=output, size=10)
output = static.nn.fc(output, size=10)
softmax_out = fluid.layers.softmax(input=output, use_cudnn=False)
cost = fluid.layers.cross_entropy(input=softmax_out, label=label)
avg_cost = fluid.layers.mean(cost)
acc_top1 = fluid.layers.accuracy(input=softmax_out, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=softmax_out, label=label, k=5)
test_program = fluid.default_main_program().clone(for_test=True)
softmax_out = F.softmax(output)
cost = F.cross_entropy(softmax_out, label=label)
avg_cost = paddle.mean(cost)
acc_top1 = paddle.metric.accuracy(input=softmax_out, label=gt, k=1)
acc_top5 = paddle.metric.accuracy(input=softmax_out, label=gt, k=5)
test_program = static.default_main_program().clone(for_test=True)
optimizer = fluid.optimizer.Adam(learning_rate=0.1)
optimizer = paddle.optimizer.Adam(learning_rate=0.1)
optimizer.minimize(avg_cost)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
place = paddle.CPUPlace()
exe = static.Executor(place)
exe.run(startup_program)
return exe, train_program, test_program, (data, label), avg_cost, acc_top1, acc_top5
```
## 4. 定义输入数据函数
使用的数据集为cifar10,paddle框架中`paddle.dataset.cifar`包括了cifar数据集的下载和读取,代码如下:
为了快速执行该示例,我们使用的数据集为CIFAR10,Paddle框架的`paddle.vision.datasets.Cifar10`包定义了CIFAR10数据的下载和读取。 代码如下:
```python
def input_data(inputs):
train_reader = paddle.fluid.io.batch(paddle.reader.shuffle(paddle.dataset.cifar.train10(cycle=False), buf_size=1024),batch_size=256)
train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())
eval_reader = paddle.fluid.io.batch(paddle.dataset.cifar.test10(cycle=False), batch_size=256)
eval_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())
return train_reader, train_feeder, eval_reader, eval_feeder
import paddle.vision.transforms as T
def input_data(image, label):
transform = T.Compose([T.Normalize([127.5], [127.5])])
train_dataset = paddle.vision.datasets.Cifar10(mode="train", transform=transform)
train_loader = paddle.io.DataLoader(train_dataset,
places=paddle.CPUPlace(),
feed_list=[image, label],
drop_last=True,
batch_size=64,
return_list=False,
shuffle=True)
eval_dataset = paddle.vision.datasets.Cifar10(mode="test", transform=transform)
eval_loader = paddle.io.DataLoader(eval_dataset,
places=paddle.CPUPlace(),
feed_list=[image, label],
drop_last=False,
batch_size=64,
return_list=False,
shuffle=False)
return train_loader, eval_loader
```
## 5. 定义训练函数
根据训练program和训练数据进行训练。
```python
def start_train(program, data_reader, data_feeder):
def start_train(program, data_loader):
outputs = [avg_cost.name, acc_top1.name, acc_top5.name]
for data in data_reader():
batch_reward = exe.run(program, feed=data_feeder.feed(data), fetch_list = outputs)
for data in data_loader():
batch_reward = exe.run(program, feed=data, fetch_list = outputs)
print("TRAIN: loss: {}, acc1: {}, acc5:{}".format(batch_reward[0], batch_reward[1], batch_reward[2]))
```
## 6. 定义评估函数
根据评估program和评估数据进行评估。
```python
def start_eval(program, data_reader, data_feeder):
def start_eval(program, data_loader):
reward = []
outputs = [avg_cost.name, acc_top1.name, acc_top5.name]
for data in data_reader():
batch_reward = exe.run(program, feed=data_feeder.feed(data), fetch_list = outputs)
for data in data_loader():
batch_reward = exe.run(program, feed=data, fetch_list = outputs)
reward_avg = np.mean(np.array(batch_reward), axis=1)
reward.append(reward_avg)
print("TEST: loss: {}, acc1: {}, acc5:{}".format(batch_reward[0], batch_reward[1], batch_reward[2]))
......@@ -112,23 +132,23 @@ archs = sanas.next_archs()[0]
### 7.2 构造program
调用步骤3中的函数,根据4.1中的模型结构构造相应的program。
```python
exe, train_program, eval_program, inputs, avg_cost, acc_top1, acc_top5 = build_program(archs)
exe, train_program, eval_program, (image, label), avg_cost, acc_top1, acc_top5 = build_program(archs)
```
### 7.3 定义输入数据
```python
train_reader, train_feeder, eval_reader, eval_feeder = input_data(inputs)
train_loader, eval_loader = input_data(image, label)
```
### 7.4 训练模型
根据上面得到的训练program和评估数据启动训练。
```python
start_train(train_program, train_reader, train_feeder)
start_train(train_program, train_loader)
```
### 7.5 评估模型
根据上面得到的评估program和评估数据启动评估。
```python
finally_reward = start_eval(eval_program, eval_reader, eval_feeder)
finally_reward = start_eval(eval_program, eval_loader)
```
### 7.6 回传当前模型的得分
```
......@@ -141,16 +161,16 @@ sanas.reward(float(finally_reward[1]))
for step in range(3):
archs = sanas.next_archs()[0]
exe, train_program, eval_program, inputs, avg_cost, acc_top1, acc_top5 = build_program(archs)
train_reader, train_feeder, eval_reader, eval_feeder = input_data(inputs)
train_loader, eval_loader = input_data(inputs)
current_flops = slim.analysis.flops(train_program)
if current_flops > 321208544:
continue
for epoch in range(7):
start_train(train_program, train_reader, train_feeder)
start_train(train_program, train_loader)
finally_reward = start_eval(eval_program, eval_reader, eval_feeder)
finally_reward = start_eval(eval_program, eval_loader)
sanas.reward(float(finally_reward[1]))
```
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册