未验证 提交 6e52a430 编写于 作者: B Bai Yifan 提交者: GitHub

Merge branch 'develop' into pact_clip

# CPU上部署量化模型教程
# Intel CPU上部署量化模型教程
在Intel Casecade Lake机器上(如:Intel(R) Xeon(R) Gold 6271),经过量化和DNNL加速,INT8模型在单线程上性能为FP32模型的3~3.7倍;在Intel SkyLake机器上(如:Intel(R) Xeon(R) Gold 6148),单线程性能为FP32模型的1.5倍,而精度仅有极小下降。图像分类量化的样例教程请参考[图像分类INT8模型在CPU优化部署和预测](https://github.com/PaddlePaddle/PaddleSlim/tree/develop/demo/mkldnn_quant/README.md)。自然语言处理模型的量化请参考[ERNIE INT8 模型精度与性能复现](https://github.com/PaddlePaddle/benchmark/tree/master/Inference/c%2B%2B/ernie/mkldnn)
......
......@@ -12,5 +12,5 @@
paddledetection_slim_pruing_tutorial.md
paddledetection_slim_prune_dist_tutorial.md
paddledetection_slim_quantization_tutorial.md
image_classification_mkldnn_quant_aware_tutorial.md
image_classification_mkldnn_quant_tutorial.md
paddledetection_slim_sensitivy_tutorial.md
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册