Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
649ffd9e
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 2 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
649ffd9e
编写于
4月 14, 2020
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add conv bert search space based DARTS.
上级
b4d29614
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
110 addition
and
32 deletion
+110
-32
demo/bert/train_teacher.py
demo/bert/train_teacher.py
+1
-1
paddleslim/nas/darts/search_space/conv_bert/model/transformer_encoder.py
...darts/search_space/conv_bert/model/transformer_encoder.py
+108
-30
paddleslim/teachers/bert/cls.py
paddleslim/teachers/bert/cls.py
+1
-1
未找到文件。
demo/bert/train_teacher.py
浏览文件 @
649ffd9e
...
@@ -8,7 +8,7 @@ with fluid.dygraph.guard(place):
...
@@ -8,7 +8,7 @@ with fluid.dygraph.guard(place):
bert
=
BERTClassifier
(
3
)
bert
=
BERTClassifier
(
3
)
bert
.
fit
(
"./data/glue_data/MNLI/"
,
bert
.
fit
(
"./data/glue_data/MNLI/"
,
5
,
5
,
batch_size
=
16
,
batch_size
=
32
,
use_data_parallel
=
True
,
use_data_parallel
=
True
,
learning_rate
=
0.00005
,
learning_rate
=
0.00005
,
save_steps
=
1000
)
save_steps
=
1000
)
paddleslim/nas/darts/search_space/conv_bert/model/transformer_encoder.py
浏览文件 @
649ffd9e
...
@@ -21,7 +21,72 @@ import numpy as np
...
@@ -21,7 +21,72 @@ import numpy as np
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph
import
Embedding
,
LayerNorm
,
Linear
,
Layer
,
Conv2D
,
BatchNorm
from
paddle.fluid.dygraph
import
Embedding
,
LayerNorm
,
Linear
,
Layer
,
Conv2D
,
BatchNorm
,
Pool2D
,
to_variable
from
paddle.fluid.initializer
import
NormalInitializer
PRIMITIVES
=
[
'std_conv_3'
,
'std_conv_5'
,
'std_conv_7'
,
'dil_conv_3'
,
'dil_conv_5'
,
'dil_conv_7'
,
'avg_pool_3'
,
'max_pool_3'
,
'none'
,
'skip_connect'
]
OPS
=
{
'std_conv_3'
:
lambda
:
ConvBN
(
1
,
1
,
filter_size
=
3
,
dilation
=
1
),
'std_conv_5'
:
lambda
:
ConvBN
(
1
,
1
,
filter_size
=
5
,
dilation
=
1
),
'std_conv_7'
:
lambda
:
ConvBN
(
1
,
1
,
filter_size
=
7
,
dilation
=
1
),
'dil_conv_3'
:
lambda
:
ConvBN
(
1
,
1
,
filter_size
=
3
,
dilation
=
2
),
'dil_conv_5'
:
lambda
:
ConvBN
(
1
,
1
,
filter_size
=
5
,
dilation
=
2
),
'dil_conv_7'
:
lambda
:
ConvBN
(
1
,
1
,
filter_size
=
7
,
dilation
=
2
),
'avg_pool_3'
:
lambda
:
Pool2D
(
pool_size
=
(
3
,
1
),
pool_type
=
'avg'
),
'max_pool_3'
:
lambda
:
Pool2D
(
pool_size
=
(
3
,
1
),
pool_type
=
'max'
),
'none'
:
lambda
:
Zero
(),
'skip_connect'
:
lambda
:
Identity
(),
}
class
MixedOp
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
):
super
(
MixedOp
,
self
).
__init__
()
ops
=
[
OPS
[
primitive
]()
for
primitive
in
PRIMITIVES
]
self
.
_ops
=
fluid
.
dygraph
.
LayerList
(
ops
)
def
forward
(
self
,
x
,
weights
):
for
i
in
range
(
len
(
self
.
_ops
)):
if
weights
[
i
]
!=
0
:
return
self
.
_ops
[
i
](
x
)
*
weights
[
i
]
class
Zero
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
):
super
(
Zero
,
self
).
__init__
()
def
forward
(
self
,
x
):
x
=
fluid
.
layers
.
zeros_like
(
x
)
return
x
class
Identity
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
):
super
(
Identity
,
self
).
__init__
()
def
forward
(
self
,
x
):
return
x
def
gumbel_softmax
(
logits
,
temperature
=
0.1
,
hard
=
True
,
eps
=
1e-20
):
U
=
np
.
random
.
uniform
(
0
,
1
,
logits
.
shape
)
logits
=
logits
-
to_variable
(
np
.
log
(
-
np
.
log
(
U
+
eps
)
+
eps
).
astype
(
"float32"
))
logits
=
logits
/
temperature
logits
=
fluid
.
layers
.
softmax
(
logits
)
if
hard
:
maxes
=
fluid
.
layers
.
reduce_max
(
logits
,
dim
=
1
,
keep_dim
=
True
)
hard
=
fluid
.
layers
.
cast
((
logits
==
maxes
),
logits
.
dtype
)
tmp
=
hard
-
logits
tmp
.
stop_gradient
=
True
out
=
tmp
+
logits
return
out
class
ConvBN
(
fluid
.
dygraph
.
Layer
):
class
ConvBN
(
fluid
.
dygraph
.
Layer
):
...
@@ -55,30 +120,31 @@ class ConvBN(fluid.dygraph.Layer):
...
@@ -55,30 +120,31 @@ class ConvBN(fluid.dygraph.Layer):
return
bn
return
bn
class
EncoderSubLayer
(
Layer
):
class
Cell
(
fluid
.
dygraph
.
Layer
):
"""
def
__init__
(
self
,
steps
):
EncoderSubLayer
super
(
Cell
,
self
).
__init__
()
"""
self
.
_steps
=
steps
def
__init__
(
self
,
name
=
""
):
ops
=
[]
for
i
in
range
(
self
.
_steps
):
for
j
in
range
(
2
+
i
):
op
=
MixedOp
()
ops
.
append
(
op
)
self
.
_ops
=
fluid
.
dygraph
.
LayerList
(
ops
)
super
(
EncoderSubLayer
,
self
).
__init__
()
def
forward
(
self
,
s0
,
s1
,
weights
,
weights2
=
None
):
self
.
name
=
name
self
.
conv0
=
ConvBN
(
1
,
1
,
filter_size
=
5
)
self
.
conv1
=
ConvBN
(
1
,
1
,
filter_size
=
5
)
self
.
conv2
=
ConvBN
(
1
,
1
,
filter_size
=
5
)
def
forward
(
self
,
enc_input
):
states
=
[
s0
,
s1
]
"""
offset
=
0
for
ward
for
i
in
range
(
self
.
_steps
):
:param enc_input:
s
=
fluid
.
layers
.
sums
([
:param attn_bias:
self
.
_ops
[
offset
+
j
](
h
,
weights
[
offset
+
j
])
:return:
for
j
,
h
in
enumerate
(
states
)
"""
])
tmp
=
self
.
conv0
(
enc_input
)
offset
+=
len
(
states
)
tmp
=
self
.
conv1
(
tmp
)
states
.
append
(
s
)
tmp
=
self
.
conv2
(
tmp
)
out
=
fluid
.
layers
.
sum
(
states
[
-
self
.
_steps
:]
)
return
tmp
return
out
class
EncoderLayer
(
Layer
):
class
EncoderLayer
(
Layer
):
...
@@ -89,15 +155,23 @@ class EncoderLayer(Layer):
...
@@ -89,15 +155,23 @@ class EncoderLayer(Layer):
def
__init__
(
self
,
n_layer
,
d_model
=
128
,
name
=
""
):
def
__init__
(
self
,
n_layer
,
d_model
=
128
,
name
=
""
):
super
(
EncoderLayer
,
self
).
__init__
()
super
(
EncoderLayer
,
self
).
__init__
()
self
.
_encoder_sublayers
=
list
()
cells
=
[]
self
.
_n_layer
=
n_layer
self
.
_n_layer
=
n_layer
self
.
_d_model
=
d_model
self
.
_d_model
=
d_model
self
.
_steps
=
3
cells
=
[]
for
i
in
range
(
n_layer
):
for
i
in
range
(
n_layer
):
self
.
_encoder_sublayers
.
append
(
cells
.
append
(
Cell
(
steps
=
self
.
_steps
))
self
.
add_sublayer
(
self
.
_cells
=
fluid
.
dygraph
.
LayerList
(
cells
)
'esl_%d'
%
i
,
EncoderSubLayer
(
name
=
name
+
'_layer_'
+
str
(
i
))))
k
=
sum
(
1
for
i
in
range
(
self
.
_steps
)
for
n
in
range
(
2
+
i
))
num_ops
=
len
(
PRIMITIVES
)
self
.
alphas
=
fluid
.
layers
.
create_parameter
(
shape
=
[
k
,
num_ops
],
dtype
=
"float32"
,
default_initializer
=
NormalInitializer
(
loc
=
0.0
,
scale
=
1e-3
))
def
forward
(
self
,
enc_input
):
def
forward
(
self
,
enc_input
):
"""
"""
...
@@ -108,10 +182,14 @@ class EncoderLayer(Layer):
...
@@ -108,10 +182,14 @@ class EncoderLayer(Layer):
"""
"""
tmp
=
fluid
.
layers
.
reshape
(
enc_input
,
tmp
=
fluid
.
layers
.
reshape
(
enc_input
,
[
-
1
,
1
,
enc_input
.
shape
[
1
],
self
.
_d_model
])
[
-
1
,
1
,
enc_input
.
shape
[
1
],
self
.
_d_model
])
alphas
=
gumbel_softmax
(
self
.
alphas
)
outputs
=
[]
outputs
=
[]
for
i
in
range
(
self
.
_n_layer
):
s0
=
s1
=
tmp
tmp
=
self
.
_encoder_sublayers
[
i
](
tmp
)
for
i
,
cell
in
enumerate
(
self
.
_cells
):
s0
,
s1
=
s1
,
cell
(
s0
,
s1
,
alphas
)
enc_output
=
fluid
.
layers
.
reshape
(
enc_output
=
fluid
.
layers
.
reshape
(
tmp
,
[
-
1
,
enc_input
.
shape
[
1
],
self
.
_d_model
])
s1
,
[
-
1
,
enc_input
.
shape
[
1
],
self
.
_d_model
])
outputs
.
append
(
enc_output
)
outputs
.
append
(
enc_output
)
return
outputs
return
outputs
paddleslim/teachers/bert/cls.py
浏览文件 @
649ffd9e
...
@@ -204,7 +204,7 @@ class BERTClassifier(Layer):
...
@@ -204,7 +204,7 @@ class BERTClassifier(Layer):
data_ids
)
data_ids
)
optimizer
.
optimization
(
optimizer
.
optimization
(
losses
[
-
1
]
,
total_loss
,
use_data_parallel
=
use_data_parallel
,
use_data_parallel
=
use_data_parallel
,
model
=
self
.
cls_model
)
model
=
self
.
cls_model
)
self
.
cls_model
.
clear_gradients
()
self
.
cls_model
.
clear_gradients
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录