Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
638a980c
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 1 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
638a980c
编写于
10月 31, 2019
作者:
B
baiyfbupt
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add __init__ and run
上级
3082ddab
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
230 addition
and
0 deletion
+230
-0
paddleslim/dist/mp_distiller.py
paddleslim/dist/mp_distiller.py
+230
-0
未找到文件。
paddleslim/dist/mp_distiller.py
0 → 100755
浏览文件 @
638a980c
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.fluid
as
fluid
from
paddle.fluid.framework
import
Variable
from
paddle.fluid.reader
import
DataLoaderBase
from
paddle.fluid.core
import
EOFException
from
paddle.fluid.incubate.fleet.utils.hdfs
import
HDFSClient
from
six.moves.queue
import
Queue
import
numpy
as
np
import
os
__all__
=
[
'Knowledge'
]
class
Knowledge
(
object
):
"""
The knowledge class describes how to extract and store the dark knowledge
of the teacher model, and how the student model learns these dark knowledge.
"""
def
__init__
(
self
,
path
,
items
,
reduce_strategy
=
{
'type'
:
'sum'
,
'key'
:
'image'
}):
"""Init a knowledge instance.
Args:
path(list<str>, str, optional): Specifies the storage path of the knowledge,
supports AFS/HDFS, local file system, and memory.
items(list<str>): Save the tensor of the specified name
reduce_strategy(dict, optional): The policy for performing the reduce
operation. If it is set to None,
the reduce operation is not performed.
reduce_strategy.type(str): Type of reduce operation.
reduce_strategy.key(str): The key of the reduce operation.
It is an element in the item.
"""
assert
(
isinstance
(
path
,
list
)
or
isinstance
(
path
,
str
)
or
(
path
is
None
)),
"path type should be list or str or None"
assert
(
isinstance
(
items
,
list
)),
"items should be a list"
assert
(
isinstance
(
reduce_strategy
,
dict
)),
"reduce_strategy should be a dict"
self
.
path
=
path
if
isinstance
(
self
.
path
,
list
):
self
.
write_type
=
'HDFS/AFS'
assert
(
len
(
self
.
path
)
==
4
and
isinstance
(
self
.
path
[
0
],
str
)
and
isinstance
(
self
.
path
[
1
],
str
)
and
isinstance
(
self
.
path
[
2
],
str
)
and
isinstance
(
self
.
path
[
3
],
str
)),
"path should contains four
\
str, ['local hadoop home', 'fs.default.name', 'hadoop.job.ugi', 'FS path']"
hadoop_home
=
self
.
path
[
0
]
configs
=
{
"fs.default.name"
:
self
.
path
[
1
],
"hadoop.job.ugi"
:
self
.
path
[
2
]
}
self
.
client
=
HDFSClient
(
hadoop_home
,
configs
)
assert
(
self
.
client
.
is_exist
(
self
.
path
[
3
])
==
True
),
"Plese make sure your hadoop
\
confiuration is correct and FS path exists"
self
.
hdfs_local_path
=
"./teacher_knowledge"
if
not
os
.
path
.
exists
(
self
.
hdfs_local_path
):
os
.
mkdir
(
self
.
hdfs_local_path
)
elif
isinstance
(
self
.
path
,
str
):
self
.
write_type
=
"LocalFS"
if
not
os
.
path
.
exists
(
path
):
raise
ValueError
(
"The local path [%s] does not exist."
%
(
path
))
else
:
self
.
write_type
=
"MEM"
self
.
knowledge_queue
=
Queue
(
64
)
self
.
items
=
items
self
.
reduce_strategy
=
reduce_strategy
def
_write
(
self
,
data
):
if
self
.
write_type
==
'HDFS/AFS'
:
file_name
=
'knowledge_'
+
str
(
self
.
file_cnt
)
file_path
=
self
.
hdfs_local_path
+
file_name
np
.
save
(
file_path
,
data
)
self
.
file_cnt
+=
1
self
.
client
.
upload
(
self
.
path
[
3
],
self
.
local_file_path
)
print
(
'{}.npy pushed to HDFS/AFS: {}'
.
format
(
file_name
,
self
.
path
[
3
]))
elif
self
.
write_type
==
'LocalFS'
:
file_name
=
'knowledge_'
+
str
(
self
.
file_cnt
)
file_path
=
os
.
path
.
join
(
self
.
path
,
file_name
)
np
.
save
(
file_path
,
data
)
print
(
'{}.npy saved'
.
format
(
file_name
))
self
.
file_cnt
+=
1
else
:
self
.
knowledge_queue
.
put
(
data
)
def
run
(
self
,
teacher_program
,
exe
,
place
,
scope
,
reader
,
inputs
,
outputs
,
call_back
):
"""Start teacher model to do information.
Args:
teacher_program(Program): teacher program.
scope(Scope): The scope used to execute the teacher,
which contains the initialized variables.
reader(reader): The data reader used by the teacher.
inputs(list<str>): The name of variables to feed the teacher program.
outputs(list<str>): Need to write to the variable instance's names of
the Knowledge instance, which needs to correspond
to the Knowledge's items.
call_back(func, optional): The callback function that handles the
outputs of the teacher, which is none by default,
that is, the output of the teacher is concat directly.
Return:
(bool): Whether the teacher task was successfully registered and started
"""
assert
(
isinstance
(
teacher_program
,
fluid
.
Program
)),
"teacher_program should be a fluid.Program"
assert
(
isinstance
(
inputs
,
list
)),
"inputs should be a list"
if
len
(
inputs
)
>
0
:
assert
(
isinstance
(
inputs
[
0
],
str
)),
"inputs shoud be list<str>"
assert
(
isinstance
(
outputs
,
list
)),
"outputs should be a list"
if
len
(
outputs
)
>
0
:
assert
(
isinstance
(
outputs
[
0
],
str
)),
"outputs should be list<str>"
assert
(
len
(
self
.
items
)
==
len
(
outputs
)
),
"the length of outputs list should be equal with items list"
assert
(
callable
(
call_back
)
or
(
call_back
is
None
)
),
"call_back should be a callable function or NoneType."
for
var
in
teacher_program
.
list_vars
():
var
.
stop_gradient
=
True
compiled_teacher_program
=
fluid
.
compiler
.
CompiledProgram
(
teacher_program
)
teacher_knowledge
=
[]
self
.
file_cnt
=
0
if
isinstance
(
reader
,
Variable
)
or
(
isinstance
(
reader
,
DataLoaderBase
)
and
(
not
reader
.
iterable
)):
reader
.
start
()
try
:
batch_id
=
0
while
True
:
logits
=
exe
.
run
(
compiled_teacher_program
,
scope
=
scope
,
fetch_list
=
outputs
,
feed
=
None
)
knowledge
=
dict
()
for
index
,
array
in
enumerate
(
logits
):
knowledge
[
self
.
items
[
index
]]
=
array
teacher_knowledge
.
append
(
knowledge
)
if
batch_id
%
1
==
0
:
print
(
'infer finish iter {}'
.
format
(
batch_id
))
if
len
(
teacher_knowledge
)
>=
4
:
self
.
_write
(
teacher_knowledge
)
teacher_knowledge
=
[]
except
EOFException
:
reader
.
reset
()
if
len
(
teacher_knowledge
)
>
0
:
self
.
_write
(
teacher_knowledge
)
else
:
feeder
=
fluid
.
DataFeeder
(
feed_list
=
inputs
,
place
=
place
,
program
=
teacher_program
)
for
batch_id
,
data
in
enumerate
(
reader
()):
feed
=
feeder
.
feed
(
data
)
logits
=
exe
.
run
(
compiled_teacher_program
,
scope
=
scope
,
fetch_list
=
outputs
,
feed
=
feed
)
knowledge
=
dict
()
for
index
,
array
in
enumerate
(
logits
):
knowledge
[
self
.
items
[
index
]]
=
array
teacher_knowledge
.
append
(
knowledge
)
if
batch_id
%
1
==
0
:
print
(
'infer finish iter {}'
.
format
(
batch_id
))
if
len
(
teacher_knowledge
)
>=
4
:
self
.
_write
(
teacher_knowledge
)
teacher_knowledge
=
[]
if
len
(
teacher_knowledge
)
>
0
:
self
.
_write
(
teacher_knowledge
)
return
True
def
dist
(
self
,
student_program
,
losses
):
"""Building the distillation network
Args:
student_program(Program): student program.
losses(list<Variable>, optional): The losses need to add. If set to None
does not add any loss.
Return:
(Program): Program for distillation.
(startup_program): Program for initializing distillation network.
(reader): Data reader for distillation training.
(Variable): Loss of distillation training
"""
def
loss
(
self
,
loss_func
,
*
variables
):
"""User-defined loss
Args:
loss_func(func): Function used to define loss.
*variables(list<str>): Variable name list.
Return:
(Variable): Distillation loss.
"""
pass
def
fsp_loss
(
self
):
"""fsp loss
"""
pass
def
l2_loss
(
self
):
"""l2 loss
"""
pass
def
softlabel_loss
(
self
):
"""softlabel_loss
"""
pass
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录