Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
4d567331
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 2 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4d567331
编写于
1月 02, 2020
作者:
B
baiyfbupt
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Deployed
9bcff00c
with MkDocs version: 1.0.4
上级
3f842374
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
208 addition
and
66 deletion
+208
-66
index.html
index.html
+1
-1
model_zoo/index.html
model_zoo/index.html
+206
-64
search/search_index.json
search/search_index.json
+1
-1
sitemap.xml.gz
sitemap.xml.gz
+0
-0
未找到文件。
index.html
浏览文件 @
4d567331
...
...
@@ -293,5 +293,5 @@
<!--
MkDocs version : 1.0.4
Build Date UTC : 2020-01-02
09:26:42
Build Date UTC : 2020-01-02
11:50:58
-->
model_zoo/index.html
浏览文件 @
4d567331
...
...
@@ -202,7 +202,7 @@
<h2
id=
"1"
>
1. 量化
<a
class=
"headerlink"
href=
"#1"
title=
"Permanent link"
>
#
</a></h2>
<h3
id=
"11"
>
1.1 图象分类
<a
class=
"headerlink"
href=
"#11"
title=
"Permanent link"
>
#
</a></h3>
<p>
数据:ImageNet1000类
</p>
<p>
数据
集
:ImageNet1000类
</p>
<p>
评价指标:Top-1/Top-5准确率
</p>
<table>
<thead>
...
...
@@ -215,22 +215,22 @@
</thead>
<tbody>
<tr>
<td
align=
"center"
>
MobileNetV1
</td>
<td
align=
"center"
>
MobileNetV1
FP32
</td>
<td
align=
"center"
><a
href=
"http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar"
>
70.99%/89.68%
</a></td>
<td
align=
"center"
><a
href=
""
>
70.24%/89.03
%
</a></td>
<td
align=
"center"
><a
href=
""
>
70.70%/89.55
%
</a></td>
<td
align=
"center"
><a
href=
""
>
xx%/xx
%
</a></td>
<td
align=
"center"
><a
href=
""
>
xx%/xx
%
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNetV2
</td>
<td
align=
"center"
>
MobileNetV2
FP32
</td>
<td
align=
"center"
><a
href=
"https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar"
>
72.15%/90.65%
</a></td>
<td
align=
"center"
><
a
href=
""
>
71.36%/90.17%
</a><
/td>
<td
align=
"center"
><
a
href=
""
>
72.02%/90.23%
</a><
/td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
ResNet50
</td>
<td
align=
"center"
>
ResNet50
FP32
</td>
<td
align=
"center"
><a
href=
"http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar"
>
76.50%/93.00%
</a></td>
<td
align=
"center"
><
a
href=
""
>
76.26%/92.81%
</a><
/td>
<td
align=
"center"
><
a
href=
""
>
76.59%/93.04%
</a><
/td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
</tbody>
</table>
...
...
@@ -248,12 +248,12 @@
<tr>
<td
align=
"left"
>
MobileNetV1
</td>
<td
align=
"center"
>
17M
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
><
a
href=
""
>
xx%/xx%
</a><
/td>
<td
align=
"center"
><
a
href=
""
>
xx%/xx%
</a><
/td>
</tr>
<tr>
<td
align=
"left"
>
MobileNetV2
</td>
<td
align=
"center"
></td>
<td
align=
"center"
>
xxM
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
...
...
@@ -266,40 +266,77 @@
</tbody>
</table>
<h3
id=
"12"
>
1.2 目标检测
<a
class=
"headerlink"
href=
"#12"
title=
"Permanent link"
>
#
</a></h3>
<p>
数据:COCO 2017
</p>
<p>
评价指标:mAP
</p>
<p>
输入尺寸:608
</p>
<p>
数据集:COCO 2017
</p>
<table>
<thead>
<tr>
<th
align=
"center"
>
Model
</th>
<th
align=
"center"
>
FP32
</th>
<th
align=
"center"
>
离线量化
</th>
<th
align=
"center"
>
量化训练
</th>
<th
align=
"center"
>
输入尺寸
</th>
<th
align=
"center"
>
Image/GPU
</th>
<th
align=
"center"
>
FP32 BoxAP
</th>
<th
align=
"center"
>
离线量化 BoxAP
</th>
<th
align=
"center"
>
量化训练 BoxAP
</th>
</tr>
</thead>
<tbody>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
608
</td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
><a
href=
"https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar"
>
29.3
</a></td>
<td
align=
"center"
><a
href=
""
>
27.9
</a></td>
<td
align=
"center"
><a
href=
""
>
28.0
</a></td>
<td
align=
"center"
><a
href=
""
>
xx
</a></td>
<td
align=
"center"
><a
href=
""
>
xx
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
416
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
320
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3
</td>
<td
align=
"center"
>
608
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
"https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar"
>
41.4
</a></td>
<td
align=
"center"
><a
href=
""
>
40.4
</a></td>
<td
align=
"center"
><a
href=
""
>
40.6
</a></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3
</td>
<td
align=
"center"
>
416
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3
</td>
<td
align=
"center"
>
320
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
</tbody>
</table>
<p>
数据:WIDER-FACE
</p>
<p>
数据
集
:WIDER-FACE
</p>
<p>
评价指标:Easy/Medium/Hard mAP
</p>
<p>
输入尺寸:640
</p>
<table>
<thead>
<tr>
<th
align=
"center"
>
Model
</th>
<th
align=
"center"
>
输入尺寸
</th>
<th
align=
"center"
>
Image/GPU
</th>
<th
align=
"center"
>
FP32
</th>
<th
align=
"center"
>
离线量化
</th>
<th
align=
"center"
>
量化训练
</th>
...
...
@@ -308,18 +345,24 @@
<tbody>
<tr>
<td
align=
"center"
>
BlazeFace
</td>
<td
align=
"center"
>
640
</td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
><a
href=
"https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar"
>
0.915/0.892/0.797
</a></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
><
a
href=
""
>
xx/xx/xx
</a><
/td>
<td
align=
"center"
><
a
href=
""
>
xx/xx/xx
</a><
/td>
</tr>
<tr>
<td
align=
"center"
>
BlazeFace-Lite
</td>
<td
align=
"center"
>
640
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
"https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar"
>
0.909/0.885/0.781
</a></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
BlazeFace-NAS
</td>
<td
align=
"center"
>
640
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
"https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar"
>
0.837/0.807/0.658
</a></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
...
...
@@ -327,23 +370,22 @@
</tbody>
</table>
<h3
id=
"13"
>
1.3 图像分割
<a
class=
"headerlink"
href=
"#13"
title=
"Permanent link"
>
#
</a></h3>
<p>
数据:Cityscapes
</p>
<p>
评价指标:mIoU
</p>
<p>
数据集:Cityscapes
</p>
<table>
<thead>
<tr>
<th
align=
"center"
>
Model
</th>
<th
align=
"center"
>
FP32
</th>
<th
align=
"center"
>
离线量化
</th>
<th
align=
"center"
>
量化训练
</th>
<th
align=
"center"
>
FP32
mIoU
</th>
<th
align=
"center"
>
离线量化
mIoU
</th>
<th
align=
"center"
>
量化训练
mIoU
</th>
</tr>
</thead>
<tbody>
<tr>
<td
align=
"center"
>
DeepLabv3+/MobileNetv1
</td>
<td
align=
"center"
><a
href=
""
>
63.26
</a></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
><
a
href=
""
>
xx
</a><
/td>
<td
align=
"center"
><
a
href=
""
>
xx
</a><
/td>
</tr>
<tr>
<td
align=
"center"
>
DeepLabv3+/MobileNetv2
</td>
...
...
@@ -356,91 +398,155 @@
<h2
id=
"2"
>
2. 剪枝
<a
class=
"headerlink"
href=
"#2"
title=
"Permanent link"
>
#
</a></h2>
<h3
id=
"21"
>
2.1 图像分类
<a
class=
"headerlink"
href=
"#21"
title=
"Permanent link"
>
#
</a></h3>
<p>
数据:ImageNet1000类
</p>
<p>
评价指标:Top-1/Top-5准确率
</p>
<table>
<thead>
<tr>
<th
align=
"center"
>
Model
</th>
<th
align=
"center"
>
baseline
</th>
<th
align=
"center"
>
均匀剪枝
</th>
<th
align=
"center"
>
敏感度剪枝
</th>
<th
align=
"center"
>
自动剪枝
</th>
<th
align=
"center"
>
Top-1/Top-5
</th>
</tr>
</thead>
<tbody>
<tr>
<td
align=
"center"
>
MobileNetV1
</td>
<td
align=
"center"
><a
href=
"http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar"
>
70.99%/89.68%
</a></td>
<td
align=
"center"
><a
href=
""
>
69.4%/88.66%
</a></td>
<td
align=
"center"
><a
href=
""
>
69.8%/88.9%
</a></td>
<td
align=
"center"
>
-
</td>
</tr>
<tr>
<td
align=
"center"
>
MobileNetV1 uniform -50%
</td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNetV1 sensitive -xx%
</td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNetV2
</td>
<td
align=
"center"
><a
href=
"https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar"
>
72.15%/90.65%
</a></td>
<td
align=
"center"
><a
href=
""
>
65.79%/86.11%
</a></td>
<td
align=
"center"
>
-
</td>
<td
align=
"center"
>
-
</td>
</tr>
<tr>
<td
align=
"center"
>
MobileNetV2 uniform -50%
</td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNetV2 sensitive -xx%
</td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
ResNet34
</td>
<td
align=
"center"
><a
href=
"https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar"
>
74.57%/92.14%
</a></td>
<td
align=
"center"
><a
href=
""
>
70.99%/89.95%
</a></td>
<td
align=
"center"
>
-
</td>
<td
align=
"center"
><a
href=
""
>
70.24%/89.63%
</a></td>
</tr>
<tr>
<td
align=
"center"
>
ResNet34 uniform -50%
</td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
ResNet34 auto -50%
</td>
<td
align=
"center"
></td>
</tr>
</tbody>
</table>
<h3
id=
"22"
>
2.2 目标检测
<a
class=
"headerlink"
href=
"#22"
title=
"Permanent link"
>
#
</a></h3>
<p>
数据:Pasacl VOC
&
COCO 2017
</p>
<p>
评价指标:mAP
</p>
<p>
输入尺寸:608
</p>
<table>
<thead>
<tr>
<th
align=
"center"
>
Model
</th>
<th
align=
"center"
>
数据集
</th>
<th
align=
"center"
>
baseline
</th>
<th
align=
"center"
>
敏感度剪枝
</th>
<th
align=
"center"
>
输入尺寸
</th>
<th
align=
"center"
>
Image/GPU
</th>
<th
align=
"center"
>
baseline mAP
</th>
<th
align=
"center"
>
敏感度剪枝 mAP
</th>
</tr>
</thead>
<tbody>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
Pasacl VOC
</td>
<td
align=
"center"
>
608
</td>
<td
align=
"center"
>
8
</td>
<td
align=
"center"
><a
href=
""
>
76.2
</a></td>
<td
align=
"center"
><a
href=
""
>
77.59
</a></td>
<td
align=
"center"
><a
href=
""
>
77.59
</a>
(-50%)
</td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
Pasacl VOC
</td>
<td
align=
"center"
>
416
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
""
>
76.7
</a></td>
<td
align=
"center"
><a
href=
""
>
xx
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
Pasacl VOC
</td>
<td
align=
"center"
>
320
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
""
>
75.2
</a></td>
<td
align=
"center"
><a
href=
""
>
xx
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
COCO
</td>
<td
align=
"center"
>
608
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
"https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar"
>
29.3
</a></td>
<td
align=
"center"
><a
href=
""
>
29.56
</a></td>
<td
align=
"center"
><a
href=
""
>
29.56
</a>
(-20%)
</td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
COCO
</td>
<td
align=
"center"
>
416
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
""
>
29.3
</a></td>
<td
align=
"center"
><a
href=
""
>
xx
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
COCO
</td>
<td
align=
"center"
>
320
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
""
>
27.1
</a></td>
<td
align=
"center"
><a
href=
""
>
xx
</a></td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3
</td>
<td
align=
"center"
>
COCO
</td>
<td
align=
"center"
>
608
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
"https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar"
>
41.4
</a></td>
<td
align=
"center"
><a
href=
""
>
37.8
</a></td>
<td
align=
"center"
><a
href=
""
>
37.8
</a>
(-30%)
</td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3
</td>
<td
align=
"center"
>
COCO
</td>
<td
align=
"center"
>
416
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
R50-dcn-YOLOv3
</td>
<td
align=
"center"
>
COCO
</td>
<td
align=
"center"
>
320
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
</tbody>
</table>
<h3
id=
"23"
>
2.3 图像分割
<a
class=
"headerlink"
href=
"#23"
title=
"Permanent link"
>
#
</a></h3>
<p>
数据:Cityscapes
</p>
<p>
评价指标:mIoU
</p>
<table>
<thead>
<tr>
<th
align=
"center"
>
Model
</th>
<th
align=
"center"
>
Baseline
</th>
<th
align=
"center"
>
剪枝
</th>
<th
align=
"center"
>
Baseline
mIoU
</th>
<th
align=
"center"
>
xx剪枝 mIoU
</th>
</tr>
</thead>
<tbody>
<tr>
<td
align=
"center"
>
DeepLabv3+/MobileNetv2
</td>
<td
align=
"center"
><a
href=
"https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz"
>
69.81
</a></td>
<td
align=
"center"
></td>
<td
align=
"center"
><
a
href=
""
>
xx
</a><
/td>
</tr>
</tbody>
</table>
...
...
@@ -476,36 +582,72 @@
</table>
<div
class=
"admonition note"
>
<p
class=
"admonition-title"
>
Note
</p>
<p><a
name=
"trans1"
>
[1]
</a>
:
<a
href=
"https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar"
>
ResNet50_vd
</a>
预训练模型Top-1/Top-5准确率分别为79.12%/94.44%
</p>
<p>
带_vd后缀代表
是
开启了Mixup训练,Mixup相关介绍参考
<a
href=
"https://arxiv.org/abs/1710.09412"
>
mixup: Beyond Empirical Risk Minimization
</a></p>
<p><a
name=
"trans1"
>
[1]
</a>
:
<a
href=
"https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar"
>
ResNet50_vd
</a>
预训练模型Top-1/Top-5准确率分别为79.12%/94.44%
</p>
<p>
带_vd后缀代表开启了Mixup训练,Mixup相关介绍参考
<a
href=
"https://arxiv.org/abs/1710.09412"
>
mixup: Beyond Empirical Risk Minimization
</a></p>
<p><a
name=
"trans1"
>
[2]
</a>
:
<a
href=
"https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar"
>
ResNet101
</a>
预训练模型Top-1/Top-5准确率分别为77.56%/93.64%
</p>
</div>
<h3
id=
"32"
>
3.2 目标检测
<a
class=
"headerlink"
href=
"#32"
title=
"Permanent link"
>
#
</a></h3>
<p>
数据:Pasacl VOC
&
COCO 2017
</p>
<p>
评价指标:mAP
</p>
<p>
输入尺寸:608
</p>
<table>
<thead>
<tr>
<th
align=
"center"
>
Model
</th>
<th
align=
"center"
>
数据集
</th>
<th
align=
"center"
>
输入尺寸
</th>
<th
align=
"center"
>
Image/GPU
</th>
<th
align=
"center"
>
baseline
</th>
<th
align=
"center"
>
蒸馏后
</th>
<th
align=
"center"
>
蒸馏后
mAP
</th>
</tr>
</thead>
<tbody>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
Pasacl VOC
</td>
<td
align=
"center"
>
640
</td>
<td
align=
"center"
>
16
</td>
<td
align=
"center"
><a
href=
""
>
76.2
</a></td>
<td
align=
"center"
><a
href=
""
>
79.0
</a>
(teacher: ResNet34-YOLOv3-VOC
<sup><a
href=
"#trans3"
>
3
</a></sup>
)
</td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
Pasacl VOC
</td>
<td
align=
"center"
>
416
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
""
>
76.7
</a></td>
<td
align=
"center"
><a
href=
""
>
78.2
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
Pasacl VOC
</td>
<td
align=
"center"
>
320
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
""
>
75.2
</a></td>
<td
align=
"center"
><a
href=
""
>
75.5
</a></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
COCO
</td>
<td
align=
"center"
>
640
</td>
<td
align=
"center"
></td>
<td
align=
"center"
><a
href=
"https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar"
>
29.3
</a></td>
<td
align=
"center"
><a
href=
""
>
31.0
</a>
(teacher: ResNet34-YOLOv3-COCO
<sup><a
href=
"#trans4"
>
4
</a></sup>
)
</td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
COCO
</td>
<td
align=
"center"
>
416
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
<tr>
<td
align=
"center"
>
MobileNet-V1-YOLOv3
</td>
<td
align=
"center"
>
COCO
</td>
<td
align=
"center"
>
320
</td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
<td
align=
"center"
></td>
</tr>
</tbody>
</table>
<div
class=
"admonition note"
>
...
...
search/search_index.json
浏览文件 @
4d567331
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
sitemap.xml.gz
浏览文件 @
4d567331
无法预览此类型文件
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录