diff --git a/index.html b/index.html index 8b45e11e77cb4036b0a15540ed912b64199eed3e..76ed413dc9e9c782b178e84e336e411fbed1dc2c 100644 --- a/index.html +++ b/index.html @@ -293,5 +293,5 @@ diff --git a/model_zoo/index.html b/model_zoo/index.html index 56b2b699173b4f61edd3cd81f483e63927bce9db..32b4ccf69e61892bdf94f7d135f983c9ffb2f3f0 100644 --- a/model_zoo/index.html +++ b/model_zoo/index.html @@ -202,7 +202,7 @@
数据:ImageNet1000类
+数据集:ImageNet1000类
评价指标:Top-1/Top-5准确率
MobileNetV1 | +MobileNetV1 FP32 | 70.99%/89.68% | -70.24%/89.03% | -70.70%/89.55% | +xx%/xx% | +xx%/xx% |
MobileNetV2 | +MobileNetV2 FP32 | 72.15%/90.65% | -71.36%/90.17% | -72.02%/90.23% | ++ | |
ResNet50 | +ResNet50 FP32 | 76.50%/93.00% | -76.26%/92.81% | -76.59%/93.04% | ++ |
数据:COCO 2017
-评价指标:mAP
-输入尺寸:608
+数据集:COCO 2017
Model | -FP32 | -离线量化 | -量化训练 | +输入尺寸 | +Image/GPU | +FP32 BoxAP | +离线量化 BoxAP | +量化训练 BoxAP |
---|---|---|---|---|---|---|---|---|
MobileNet-V1-YOLOv3 | +608 | +8 | 29.3 | -27.9 | -28.0 | +xx | +xx | +|
MobileNet-V1-YOLOv3 | +416 | ++ | + | + | + | |||
MobileNet-V1-YOLOv3 | +320 | ++ | + | + | ||||
R50-dcn-YOLOv3 | +608 | +41.4 | -40.4 | -40.6 | ++ | + | ||
R50-dcn-YOLOv3 | +416 | ++ | + | + | + | |||
R50-dcn-YOLOv3 | +320 | ++ | + | + |
数据:WIDER-FACE
+数据集:WIDER-FACE
评价指标:Easy/Medium/Hard mAP
-输入尺寸:640
Model | +输入尺寸 | +Image/GPU | FP32 | 离线量化 | 量化训练 | @@ -308,18 +345,24 @@||
---|---|---|---|---|---|---|---|
BlazeFace | +640 | +8 | 0.915/0.892/0.797 | -- | + | xx/xx/xx | +xx/xx/xx |
BlazeFace-Lite | +640 | +0.909/0.885/0.781 | |||||
BlazeFace-NAS | +640 | +0.837/0.807/0.658 | @@ -327,23 +370,22 @@ |
数据:Cityscapes
-评价指标:mIoU
+数据集:Cityscapes
Model | -FP32 | -离线量化 | -量化训练 | +FP32 mIoU | +离线量化 mIoU | +量化训练 mIoU | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DeepLabv3+/MobileNetv1 | 63.26 | -- | + | xx | +xx | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DeepLabv3+/MobileNetv2 | @@ -356,91 +398,155 @@
Model | -baseline | -均匀剪枝 | -敏感度剪枝 | -自动剪枝 | +Top-1/Top-5 |
---|---|---|---|---|---|
MobileNetV1 | 70.99%/89.68% | -69.4%/88.66% | -69.8%/88.9% | -- | +|
MobileNetV1 uniform -50% | ++ | ||||
MobileNetV1 sensitive -xx% | +|||||
MobileNetV2 | 72.15%/90.65% | -65.79%/86.11% | -- | -- | +|
MobileNetV2 uniform -50% | ++ | ||||
MobileNetV2 sensitive -xx% | +|||||
ResNet34 | 74.57%/92.14% | -70.99%/89.95% | -- | -70.24%/89.63% | +|
ResNet34 uniform -50% | ++ | ||||
ResNet34 auto -50% | +
数据:Pasacl VOC & COCO 2017
-评价指标:mAP
-输入尺寸:608
Model | 数据集 | -baseline | -敏感度剪枝 | +输入尺寸 | +Image/GPU | +baseline mAP | +敏感度剪枝 mAP |
---|---|---|---|---|---|---|---|
MobileNet-V1-YOLOv3 | Pasacl VOC | +608 | +8 | 76.2 | -77.59 | +77.59 (-50%) | +|
MobileNet-V1-YOLOv3 | +Pasacl VOC | +416 | ++ | 76.7 | +xx | +||
MobileNet-V1-YOLOv3 | +Pasacl VOC | +320 | ++ | 75.2 | +xx | ||
MobileNet-V1-YOLOv3 | COCO | +608 | +29.3 | -29.56 | +29.56 (-20%) | +||
MobileNet-V1-YOLOv3 | +COCO | +416 | ++ | 29.3 | +xx | +||
MobileNet-V1-YOLOv3 | +COCO | +320 | ++ | 27.1 | +xx | ||
R50-dcn-YOLOv3 | COCO | +608 | +41.4 | -37.8 | +37.8 (-30%) | +||
R50-dcn-YOLOv3 | +COCO | +416 | ++ | + | + | ||
R50-dcn-YOLOv3 | +COCO | +320 | ++ | + |
数据:Cityscapes
-评价指标:mIoU
Model | -Baseline | -剪枝 | +Baseline mIoU | +xx剪枝 mIoU |
---|---|---|---|---|
DeepLabv3+/MobileNetv2 | 69.81 | -+ | xx |
Note
-[1]:ResNet50_vd预训练模型Top-1/Top-5准确率分别为79.12%/94.44%
-带_vd后缀代表是开启了Mixup训练,Mixup相关介绍参考mixup: Beyond Empirical Risk Minimization
+[1]:ResNet50_vd预训练模型Top-1/Top-5准确率分别为79.12%/94.44%
+带_vd后缀代表开启了Mixup训练,Mixup相关介绍参考mixup: Beyond Empirical Risk Minimization
数据:Pasacl VOC & COCO 2017
-评价指标:mAP
-输入尺寸:608
Model | 数据集 | +输入尺寸 | +Image/GPU | baseline | -蒸馏后 | +蒸馏后 mAP |
---|---|---|---|---|---|---|
MobileNet-V1-YOLOv3 | Pasacl VOC | +640 | +16 | 76.2 | 79.0 (teacher: ResNet34-YOLOv3-VOC3) | |
MobileNet-V1-YOLOv3 | +Pasacl VOC | +416 | ++ | 76.7 | +78.2 | +|
MobileNet-V1-YOLOv3 | +Pasacl VOC | +320 | ++ | 75.2 | +75.5 | +|
MobileNet-V1-YOLOv3 | COCO | +640 | +29.3 | 31.0 (teacher: ResNet34-YOLOv3-COCO4) | ||
MobileNet-V1-YOLOv3 | +COCO | +416 | ++ | + | + | |
MobileNet-V1-YOLOv3 | +COCO | +320 | ++ | + | + |