Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
4b8befd0
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 2 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4b8befd0
编写于
11月 27, 2019
作者:
I
itminner
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'upstream/develop' into develop
上级
08536fca
b0eb72a0
变更
15
隐藏空白更改
内联
并排
Showing
15 changed file
with
962 addition
and
165 deletion
+962
-165
demo/distillation/train.py
demo/distillation/train.py
+238
-0
demo/nas/sa_nas_mobilenetv2.py
demo/nas/sa_nas_mobilenetv2.py
+276
-0
demo/nas/sa_nas_mobilenetv2_cifar10.py
demo/nas/sa_nas_mobilenetv2_cifar10.py
+0
-122
demo/optimizer.py
demo/optimizer.py
+300
-0
paddleslim/common/controller_server.py
paddleslim/common/controller_server.py
+2
-0
paddleslim/common/sa_controller.py
paddleslim/common/sa_controller.py
+2
-2
paddleslim/core/graph_wrapper.py
paddleslim/core/graph_wrapper.py
+8
-0
paddleslim/nas/sa_nas.py
paddleslim/nas/sa_nas.py
+8
-3
paddleslim/nas/search_space/combine_search_space.py
paddleslim/nas/search_space/combine_search_space.py
+6
-3
paddleslim/nas/search_space/mobilenetv1.py
paddleslim/nas/search_space/mobilenetv1.py
+3
-1
paddleslim/nas/search_space/mobilenetv2.py
paddleslim/nas/search_space/mobilenetv2.py
+82
-17
paddleslim/nas/search_space/search_space_base.py
paddleslim/nas/search_space/search_space_base.py
+9
-1
paddleslim/prune/pruner.py
paddleslim/prune/pruner.py
+22
-14
tests/test_prune.py
tests/test_prune.py
+1
-1
tests/test_sa_nas.py
tests/test_sa_nas.py
+5
-1
未找到文件。
demo/distillation/train.py
0 → 100644
浏览文件 @
4b8befd0
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
sys
import
math
import
logging
import
paddle
import
argparse
import
functools
import
numpy
as
np
import
paddle.fluid
as
fluid
sys
.
path
.
append
(
sys
.
path
[
0
]
+
"/../"
)
import
models
import
imagenet_reader
as
reader
from
utility
import
add_arguments
,
print_arguments
from
paddleslim.dist
import
merge
,
l2_loss
,
soft_label_loss
,
fsp_loss
logging
.
basicConfig
(
format
=
'%(asctime)s-%(levelname)s: %(message)s'
)
_logger
=
logging
.
getLogger
(
__name__
)
_logger
.
setLevel
(
logging
.
INFO
)
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'batch_size'
,
int
,
64
*
4
,
"Minibatch size."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether to use GPU or not."
)
add_arg
(
'total_images'
,
int
,
1281167
,
"Training image number."
)
add_arg
(
'image_shape'
,
str
,
"3,224,224"
,
"Input image size"
)
add_arg
(
'lr'
,
float
,
0.1
,
"The learning rate used to fine-tune pruned model."
)
add_arg
(
'lr_strategy'
,
str
,
"piecewise_decay"
,
"The learning rate decay strategy."
)
add_arg
(
'l2_decay'
,
float
,
3e-5
,
"The l2_decay parameter."
)
add_arg
(
'momentum_rate'
,
float
,
0.9
,
"The value of momentum_rate."
)
add_arg
(
'num_epochs'
,
int
,
120
,
"The number of total epochs."
)
add_arg
(
'data'
,
str
,
"mnist"
,
"Which data to use. 'mnist' or 'imagenet'"
)
add_arg
(
'log_period'
,
int
,
20
,
"Log period in batches."
)
add_arg
(
'model'
,
str
,
"MobileNet"
,
"Set the network to use."
)
add_arg
(
'pretrained_model'
,
str
,
None
,
"Whether to use pretrained model."
)
add_arg
(
'teacher_model'
,
str
,
"ResNet50"
,
"Set the teacher network to use."
)
add_arg
(
'teacher_pretrained_model'
,
str
,
"../pretrain/ResNet50_pretrained"
,
"Whether to use pretrained model."
)
parser
.
add_argument
(
'--step_epochs'
,
nargs
=
'+'
,
type
=
int
,
default
=
[
30
,
60
,
90
],
help
=
"piecewise decay step"
)
# yapf: enable
model_list
=
[
m
for
m
in
dir
(
models
)
if
"__"
not
in
m
]
def
piecewise_decay
(
args
):
step
=
int
(
math
.
ceil
(
float
(
args
.
total_images
)
/
args
.
batch_size
))
bd
=
[
step
*
e
for
e
in
args
.
step_epochs
]
lr
=
[
args
.
lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
args
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
args
.
l2_decay
))
return
optimizer
def
cosine_decay
(
args
):
step
=
int
(
math
.
ceil
(
float
(
args
.
total_images
)
/
args
.
batch_size
))
learning_rate
=
fluid
.
layers
.
cosine_decay
(
learning_rate
=
args
.
lr
,
step_each_epoch
=
step
,
epochs
=
args
.
num_epochs
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
args
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
args
.
l2_decay
))
return
optimizer
def
create_optimizer
(
args
):
if
args
.
lr_strategy
==
"piecewise_decay"
:
return
piecewise_decay
(
args
)
elif
args
.
lr_strategy
==
"cosine_decay"
:
return
cosine_decay
(
args
)
def
compress
(
args
):
if
args
.
data
==
"mnist"
:
import
paddle.dataset.mnist
as
reader
train_reader
=
reader
.
train
()
val_reader
=
reader
.
test
()
class_dim
=
10
image_shape
=
"1,28,28"
elif
args
.
data
==
"imagenet"
:
import
imagenet_reader
as
reader
train_reader
=
reader
.
train
()
val_reader
=
reader
.
val
()
class_dim
=
1000
image_shape
=
"3,224,224"
else
:
raise
ValueError
(
"{} is not supported."
.
format
(
args
.
data
))
image_shape
=
[
int
(
m
)
for
m
in
image_shape
.
split
(
","
)]
assert
args
.
model
in
model_list
,
"{} is not in lists: {}"
.
format
(
args
.
model
,
model_list
)
student_program
=
fluid
.
Program
()
s_startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
student_program
,
s_startup
):
with
fluid
.
unique_name
.
guard
():
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
train_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
[
image
,
label
],
capacity
=
64
,
use_double_buffer
=
True
,
iterable
=
True
)
valid_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
[
image
,
label
],
capacity
=
64
,
use_double_buffer
=
True
,
iterable
=
True
)
# model definition
model
=
models
.
__dict__
[
args
.
model
]()
out
=
model
.
net
(
input
=
image
,
class_dim
=
class_dim
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
#print("="*50+"student_model_params"+"="*50)
#for v in student_program.list_vars():
# print(v.name, v.shape)
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
train_reader
=
paddle
.
batch
(
train_reader
,
batch_size
=
args
.
batch_size
,
drop_last
=
True
)
val_reader
=
paddle
.
batch
(
val_reader
,
batch_size
=
args
.
batch_size
,
drop_last
=
True
)
val_program
=
student_program
.
clone
(
for_test
=
True
)
places
=
fluid
.
cuda_places
()
train_loader
.
set_sample_list_generator
(
train_reader
,
places
)
valid_loader
.
set_sample_list_generator
(
val_reader
,
place
)
teacher_model
=
models
.
__dict__
[
args
.
teacher_model
]()
# define teacher program
teacher_program
=
fluid
.
Program
()
t_startup
=
fluid
.
Program
()
teacher_scope
=
fluid
.
Scope
()
with
fluid
.
scope_guard
(
teacher_scope
):
with
fluid
.
program_guard
(
teacher_program
,
t_startup
):
with
fluid
.
unique_name
.
guard
():
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
predict
=
teacher_model
.
net
(
image
,
class_dim
=
class_dim
)
#print("="*50+"teacher_model_params"+"="*50)
#for v in teacher_program.list_vars():
# print(v.name, v.shape)
exe
.
run
(
t_startup
)
assert
args
.
teacher_pretrained_model
and
os
.
path
.
exists
(
args
.
teacher_pretrained_model
),
"teacher_pretrained_model should be set when teacher_model is not None."
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
args
.
teacher_pretrained_model
,
var
.
name
)
)
and
var
.
name
!=
'conv1_weights'
and
var
.
name
!=
'fc_0.w_0'
and
var
.
name
!=
'fc_0.b_0'
fluid
.
io
.
load_vars
(
exe
,
args
.
teacher_pretrained_model
,
main_program
=
teacher_program
,
predicate
=
if_exist
)
data_name_map
=
{
'image'
:
'image'
}
main
=
merge
(
teacher_program
,
student_program
,
data_name_map
,
place
,
teacher_scope
=
teacher_scope
)
#print("="*50+"teacher_vars"+"="*50)
#for v in teacher_program.list_vars():
# if '_generated_var' not in v.name and 'fetch' not in v.name and 'feed' not in v.name:
# print(v.name, v.shape)
#return
with
fluid
.
program_guard
(
main
,
s_startup
):
l2_loss_v
=
l2_loss
(
"teacher_fc_0.tmp_0"
,
"fc_0.tmp_0"
,
main
)
fsp_loss_v
=
fsp_loss
(
"teacher_res2a_branch2a.conv2d.output.1.tmp_0"
,
"teacher_res3a_branch2a.conv2d.output.1.tmp_0"
,
"depthwise_conv2d_1.tmp_0"
,
"conv2d_3.tmp_0"
,
main
)
loss
=
avg_cost
+
l2_loss_v
+
fsp_loss_v
opt
=
create_optimizer
(
args
)
opt
.
minimize
(
loss
)
exe
.
run
(
s_startup
)
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
fuse_all_reduce_ops
=
False
parallel_main
=
fluid
.
CompiledProgram
(
main
).
with_data_parallel
(
loss_name
=
loss
.
name
,
build_strategy
=
build_strategy
)
for
epoch_id
in
range
(
args
.
num_epochs
):
for
step_id
,
data
in
enumerate
(
train_loader
):
loss_1
,
loss_2
,
loss_3
,
loss_4
=
exe
.
run
(
parallel_main
,
feed
=
data
,
fetch_list
=
[
loss
.
name
,
avg_cost
.
name
,
l2_loss_v
.
name
,
fsp_loss_v
.
name
])
if
step_id
%
args
.
log_period
==
0
:
_logger
.
info
(
"train_epoch {} step {} loss {:.6f}, class loss {:.6f}, l2 loss {:.6f}, fsp loss {:.6f}"
.
format
(
epoch_id
,
step_id
,
loss_1
[
0
],
loss_2
[
0
],
loss_3
[
0
],
loss_4
[
0
]))
val_acc1s
=
[]
val_acc5s
=
[]
for
step_id
,
data
in
enumerate
(
valid_loader
):
val_loss
,
val_acc1
,
val_acc5
=
exe
.
run
(
val_program
,
data
,
fetch_list
=
[
avg_cost
.
name
,
acc_top1
.
name
,
acc_top5
.
name
])
val_acc1s
.
append
(
val_acc1
)
val_acc5s
.
append
(
val_acc5
)
if
step_id
%
args
.
log_period
==
0
:
_logger
.
info
(
"valid_epoch {} step {} loss {:.6f}, top1 {:.6f}, top5 {:.6f}"
.
format
(
epoch_id
,
step_id
,
val_loss
[
0
],
val_acc1
[
0
],
val_acc5
[
0
]))
_logger
.
info
(
"epoch {} top1 {:.6f}, top5 {:.6f}"
.
format
(
epoch_id
,
np
.
mean
(
val_acc1s
),
np
.
mean
(
val_acc5s
)))
def
main
():
args
=
parser
.
parse_args
()
print_arguments
(
args
)
compress
(
args
)
if
__name__
==
'__main__'
:
main
()
demo/nas/sa_nas_mobilenetv2.py
0 → 100644
浏览文件 @
4b8befd0
import
sys
sys
.
path
.
append
(
'..'
)
import
numpy
as
np
import
argparse
import
ast
import
time
import
argparse
import
ast
import
logging
import
paddle
import
paddle.fluid
as
fluid
from
paddleslim.nas.search_space.search_space_factory
import
SearchSpaceFactory
from
paddleslim.analysis
import
flops
from
paddleslim.nas
import
SANAS
from
paddleslim.common
import
get_logger
from
optimizer
import
create_optimizer
import
imagenet_reader
_logger
=
get_logger
(
__name__
,
level
=
logging
.
INFO
)
def
create_data_loader
(
image_shape
):
data_shape
=
[
-
1
]
+
image_shape
data
=
fluid
.
data
(
name
=
'data'
,
shape
=
data_shape
,
dtype
=
'float32'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
[
data
,
label
],
capacity
=
1024
,
use_double_buffer
=
True
,
iterable
=
True
)
return
data_loader
,
data
,
label
def
build_program
(
main_program
,
startup_program
,
image_shape
,
archs
,
args
,
is_test
=
False
):
with
fluid
.
program_guard
(
main_program
,
startup_program
):
data_loader
,
data
,
label
=
create_data_loader
(
image_shape
)
output
=
archs
(
data
)
softmax_out
=
fluid
.
layers
.
softmax
(
input
=
output
,
use_cudnn
=
False
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
softmax_out
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
softmax_out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
softmax_out
,
label
=
label
,
k
=
5
)
if
is_test
==
False
:
optimizer
=
create_optimizer
(
args
)
optimizer
.
minimize
(
avg_cost
)
return
data_loader
,
avg_cost
,
acc_top1
,
acc_top5
def
search_mobilenetv2
(
config
,
args
,
image_size
,
is_server
=
True
):
factory
=
SearchSpaceFactory
()
space
=
factory
.
get_search_space
(
config
)
if
is_server
:
### start a server and a client
sa_nas
=
SANAS
(
config
,
server_addr
=
(
""
,
8883
),
init_temperature
=
args
.
init_temperature
,
reduce_rate
=
args
.
reduce_rate
,
search_steps
=
args
.
search_steps
,
is_server
=
True
)
else
:
### start a client
sa_nas
=
SANAS
(
config
,
server_addr
=
(
"10.255.125.38"
,
8883
),
init_temperature
=
args
.
init_temperature
,
reduce_rate
=
args
.
reduce_rate
,
search_steps
=
args
.
search_steps
,
is_server
=
False
)
image_shape
=
[
3
,
image_size
,
image_size
]
for
step
in
range
(
args
.
search_steps
):
archs
=
sa_nas
.
next_archs
()[
0
]
train_program
=
fluid
.
Program
()
test_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
train_loader
,
avg_cost
,
acc_top1
,
acc_top5
=
build_program
(
train_program
,
startup_program
,
image_shape
,
archs
,
args
)
current_flops
=
flops
(
train_program
)
print
(
'step: {}, current_flops: {}'
.
format
(
step
,
current_flops
))
if
current_flops
>
args
.
max_flops
:
continue
test_loader
,
test_avg_cost
,
test_acc_top1
,
test_acc_top5
=
build_program
(
test_program
,
startup_program
,
image_shape
,
archs
,
args
,
is_test
=
True
)
test_program
=
test_program
.
clone
(
for_test
=
True
)
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_program
)
if
args
.
data
==
'cifar10'
:
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
(
cycle
=
False
),
buf_size
=
1024
),
batch_size
=
args
.
batch_size
,
drop_last
=
True
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
cifar
.
test10
(
cycle
=
False
),
batch_size
=
args
.
batch_size
,
drop_last
=
False
)
elif
args
.
data
==
'imagenet'
:
train_reader
=
paddle
.
batch
(
imagenet_reader
.
train
(),
batch_size
=
args
.
batch_size
,
drop_last
=
True
)
test_reader
=
paddle
.
batch
(
imagenet_reader
.
val
(),
batch_size
=
args
.
batch_size
,
drop_last
=
False
)
#test_loader, _, _ = create_data_loader(image_shape)
train_loader
.
set_sample_list_generator
(
train_reader
,
places
=
fluid
.
cuda_places
()
if
args
.
use_gpu
else
fluid
.
cpu_places
())
test_loader
.
set_sample_list_generator
(
test_reader
,
places
=
place
)
build_strategy
=
fluid
.
BuildStrategy
()
train_compiled_program
=
fluid
.
CompiledProgram
(
train_program
).
with_data_parallel
(
loss_name
=
avg_cost
.
name
,
build_strategy
=
build_strategy
)
for
epoch_id
in
range
(
args
.
retain_epoch
):
for
batch_id
,
data
in
enumerate
(
train_loader
()):
fetches
=
[
avg_cost
.
name
]
s_time
=
time
.
time
()
outs
=
exe
.
run
(
train_compiled_program
,
feed
=
data
,
fetch_list
=
fetches
)[
0
]
batch_time
=
time
.
time
()
-
s_time
if
batch_id
%
10
==
0
:
_logger
.
info
(
'TRAIN: steps: {}, epoch: {}, batch: {}, cost: {}, batch_time: {}ms'
.
format
(
step
,
epoch_id
,
batch_id
,
outs
[
0
],
batch_time
))
reward
=
[]
for
batch_id
,
data
in
enumerate
(
test_loader
()):
test_fetches
=
[
test_avg_cost
.
name
,
test_acc_top1
.
name
,
test_acc_top5
.
name
]
batch_reward
=
exe
.
run
(
test_program
,
feed
=
data
,
fetch_list
=
test_fetches
)
reward_avg
=
np
.
mean
(
np
.
array
(
batch_reward
),
axis
=
1
)
reward
.
append
(
reward_avg
)
_logger
.
info
(
'TEST: step: {}, batch: {}, avg_cost: {}, acc_top1: {}, acc_top5: {}'
.
format
(
step
,
batch_id
,
batch_reward
[
0
],
batch_reward
[
1
],
batch_reward
[
2
]))
finally_reward
=
np
.
mean
(
np
.
array
(
reward
),
axis
=
0
)
_logger
.
info
(
'FINAL TEST: avg_cost: {}, acc_top1: {}, acc_top5: {}'
.
format
(
finally_reward
[
0
],
finally_reward
[
1
],
finally_reward
[
2
]))
sa_nas
.
reward
(
float
(
finally_reward
[
1
]))
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
(
description
=
'SA NAS MobileNetV2 cifar10 argparase'
)
parser
.
add_argument
(
'--use_gpu'
,
type
=
ast
.
literal_eval
,
default
=
True
,
help
=
'Whether to use GPU in train/test model.'
)
parser
.
add_argument
(
'--batch_size'
,
type
=
int
,
default
=
256
,
help
=
'batch size.'
)
parser
.
add_argument
(
'--data'
,
type
=
str
,
default
=
'cifar10'
,
choices
=
[
'cifar10'
,
'imagenet'
],
help
=
'server address.'
)
# controller
parser
.
add_argument
(
'--reduce_rate'
,
type
=
float
,
default
=
0.85
,
help
=
'reduce rate.'
)
parser
.
add_argument
(
'--init_temperature'
,
type
=
float
,
default
=
10.24
,
help
=
'init temperature.'
)
parser
.
add_argument
(
'--is_server'
,
type
=
ast
.
literal_eval
,
default
=
True
,
help
=
'Whether to start a server.'
)
# nas args
parser
.
add_argument
(
'--max_flops'
,
type
=
int
,
default
=
592948064
,
help
=
'reduce rate.'
)
parser
.
add_argument
(
'--retain_epoch'
,
type
=
int
,
default
=
5
,
help
=
'train epoch before val.'
)
parser
.
add_argument
(
'--end_epoch'
,
type
=
int
,
default
=
500
,
help
=
'end epoch present client.'
)
parser
.
add_argument
(
'--search_steps'
,
type
=
int
,
default
=
100
,
help
=
'controller server number.'
)
parser
.
add_argument
(
'--server_address'
,
type
=
str
,
default
=
None
,
help
=
'server address.'
)
# optimizer args
parser
.
add_argument
(
'--lr_strategy'
,
type
=
str
,
default
=
'piecewise_decay'
,
help
=
'learning rate decay strategy.'
)
parser
.
add_argument
(
'--lr'
,
type
=
float
,
default
=
0.1
,
help
=
'learning rate.'
)
parser
.
add_argument
(
'--l2_decay'
,
type
=
float
,
default
=
1e-4
,
help
=
'learning rate decay.'
)
parser
.
add_argument
(
'--step_epochs'
,
nargs
=
'+'
,
type
=
int
,
default
=
[
30
,
60
,
90
],
help
=
"piecewise decay step"
)
parser
.
add_argument
(
'--momentum_rate'
,
type
=
float
,
default
=
0.9
,
help
=
'learning rate decay.'
)
parser
.
add_argument
(
'--warm_up_epochs'
,
type
=
float
,
default
=
5.0
,
help
=
'learning rate decay.'
)
parser
.
add_argument
(
'--num_epochs'
,
type
=
int
,
default
=
120
,
help
=
'learning rate decay.'
)
parser
.
add_argument
(
'--decay_epochs'
,
type
=
float
,
default
=
2.4
,
help
=
'learning rate decay.'
)
parser
.
add_argument
(
'--decay_rate'
,
type
=
float
,
default
=
0.97
,
help
=
'learning rate decay.'
)
parser
.
add_argument
(
'--total_images'
,
type
=
int
,
default
=
1281167
,
help
=
'learning rate decay.'
)
args
=
parser
.
parse_args
()
print
(
args
)
if
args
.
data
==
'cifar10'
:
image_size
=
32
block_num
=
3
elif
args
.
data
==
'imagenet'
:
image_size
=
224
block_num
=
6
else
:
raise
NotImplemented
(
'data must in [cifar10, imagenet], but received: {}'
.
format
(
args
.
data
))
config_info
=
{
'input_size'
:
image_size
,
'output_size'
:
1
,
'block_num'
:
block_num
,
'block_mask'
:
None
}
config
=
[(
'MobileNetV2Space'
,
config_info
)]
search_mobilenetv2
(
config
,
args
,
image_size
,
is_server
=
args
.
is_server
)
demo/nas/sa_nas_mobilenetv2_cifar10.py
已删除
100644 → 0
浏览文件 @
08536fca
import
sys
sys
.
path
.
append
(
'..'
)
import
numpy
as
np
import
argparse
import
ast
import
paddle
import
paddle.fluid
as
fluid
from
paddleslim.nas.search_space.search_space_factory
import
SearchSpaceFactory
from
paddleslim.analysis
import
flops
from
paddleslim.nas
import
SANAS
def
create_data_loader
():
data
=
fluid
.
data
(
name
=
'data'
,
shape
=
[
-
1
,
3
,
32
,
32
],
dtype
=
'float32'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
[
data
,
label
],
capacity
=
1024
,
use_double_buffer
=
True
,
iterable
=
True
)
return
data_loader
,
data
,
label
def
init_sa_nas
(
config
):
factory
=
SearchSpaceFactory
()
space
=
factory
.
get_search_space
(
config
)
model_arch
=
space
.
token2arch
()[
0
]
main_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main_program
,
startup_program
):
data_loader
,
data
,
label
=
create_data_loader
()
output
=
model_arch
(
data
)
cost
=
fluid
.
layers
.
mean
(
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
=
output
,
label
=
label
))
base_flops
=
flops
(
main_program
)
search_steps
=
10000000
### start a server and a client
sa_nas
=
SANAS
(
config
,
search_steps
=
search_steps
,
is_server
=
True
)
### start a client, server_addr is server address
#sa_nas = SANAS(config, max_flops = base_flops, server_addr=("10.255.125.38", 18607), search_steps = search_steps, is_server=False)
return
sa_nas
,
search_steps
def
search_mobilenetv2_cifar10
(
config
,
args
):
sa_nas
,
search_steps
=
init_sa_nas
(
config
)
for
i
in
range
(
search_steps
):
print
(
'search step: '
,
i
)
archs
=
sa_nas
.
next_archs
()[
0
]
train_program
=
fluid
.
Program
()
test_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_program
,
startup_program
):
train_loader
,
data
,
label
=
create_data_loader
()
output
=
archs
(
data
)
cost
=
fluid
.
layers
.
mean
(
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
=
output
,
label
=
label
))[
0
]
test_program
=
train_program
.
clone
(
for_test
=
True
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
0.1
,
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
optimizer
.
minimize
(
cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_program
)
train_reader
=
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
(
cycle
=
False
),
buf_size
=
1024
)
train_loader
.
set_sample_generator
(
train_reader
,
batch_size
=
512
,
places
=
fluid
.
cuda_places
()
if
args
.
use_gpu
else
fluid
.
cpu_places
())
test_loader
,
_
,
_
=
create_data_loader
()
test_reader
=
paddle
.
dataset
.
cifar
.
test10
(
cycle
=
False
)
test_loader
.
set_sample_generator
(
test_reader
,
batch_size
=
256
,
drop_last
=
False
,
places
=
fluid
.
cuda_places
()
if
args
.
use_gpu
else
fluid
.
cpu_places
())
for
epoch_id
in
range
(
10
):
for
batch_id
,
data
in
enumerate
(
train_loader
()):
loss
=
exe
.
run
(
train_program
,
feed
=
data
,
fetch_list
=
[
cost
.
name
])[
0
]
if
batch_id
%
5
==
0
:
print
(
'epoch: {}, batch: {}, loss: {}'
.
format
(
epoch_id
,
batch_id
,
loss
[
0
]))
for
data
in
test_loader
():
reward
=
exe
.
run
(
test_program
,
feed
=
data
,
fetch_list
=
[
cost
.
name
])[
0
]
print
(
'reward:'
,
reward
)
sa_nas
.
reward
(
float
(
reward
))
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
(
description
=
'SA NAS MobileNetV2 cifar10 argparase'
)
parser
.
add_argument
(
'--use_gpu'
,
type
=
ast
.
literal_eval
,
default
=
True
,
help
=
'Whether to use GPU in train/test model.'
)
args
=
parser
.
parse_args
()
print
(
args
)
config_info
=
{
'input_size'
:
32
,
'output_size'
:
1
,
'block_num'
:
5
}
config
=
[(
'MobileNetV2Space'
,
config_info
)]
search_mobilenetv2_cifar10
(
config
,
args
)
demo/optimizer.py
0 → 100644
浏览文件 @
4b8befd0
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
math
import
paddle.fluid
as
fluid
import
paddle.fluid.layers.ops
as
ops
from
paddle.fluid.initializer
import
init_on_cpu
from
paddle.fluid.layers.learning_rate_scheduler
import
_decay_step_counter
def
cosine_decay
(
learning_rate
,
step_each_epoch
,
epochs
=
120
):
"""Applies cosine decay to the learning rate.
lr = 0.05 * (math.cos(epoch * (math.pi / 120)) + 1)
"""
global_step
=
_decay_step_counter
()
with
init_on_cpu
():
epoch
=
ops
.
floor
(
global_step
/
step_each_epoch
)
decayed_lr
=
learning_rate
*
\
(
ops
.
cos
(
epoch
*
(
math
.
pi
/
epochs
))
+
1
)
/
2
return
decayed_lr
def
cosine_decay_with_warmup
(
learning_rate
,
step_each_epoch
,
epochs
=
120
):
"""Applies cosine decay to the learning rate.
lr = 0.05 * (math.cos(epoch * (math.pi / 120)) + 1)
decrease lr for every mini-batch and start with warmup.
"""
global_step
=
_decay_step_counter
()
lr
=
fluid
.
layers
.
tensor
.
create_global_var
(
shape
=
[
1
],
value
=
0.0
,
dtype
=
'float32'
,
persistable
=
True
,
name
=
"learning_rate"
)
warmup_epoch
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
5
),
force_cpu
=
True
)
with
init_on_cpu
():
epoch
=
ops
.
floor
(
global_step
/
step_each_epoch
)
with
fluid
.
layers
.
control_flow
.
Switch
()
as
switch
:
with
switch
.
case
(
epoch
<
warmup_epoch
):
decayed_lr
=
learning_rate
*
(
global_step
/
(
step_each_epoch
*
warmup_epoch
))
fluid
.
layers
.
tensor
.
assign
(
input
=
decayed_lr
,
output
=
lr
)
with
switch
.
default
():
decayed_lr
=
learning_rate
*
\
(
ops
.
cos
((
global_step
-
warmup_epoch
*
step_each_epoch
)
*
(
math
.
pi
/
(
epochs
*
step_each_epoch
)))
+
1
)
/
2
fluid
.
layers
.
tensor
.
assign
(
input
=
decayed_lr
,
output
=
lr
)
return
lr
def
exponential_decay_with_warmup
(
learning_rate
,
step_each_epoch
,
decay_epochs
,
decay_rate
=
0.97
,
warm_up_epoch
=
5.0
):
"""Applies exponential decay to the learning rate.
"""
global_step
=
_decay_step_counter
()
lr
=
fluid
.
layers
.
tensor
.
create_global_var
(
shape
=
[
1
],
value
=
0.0
,
dtype
=
'float32'
,
persistable
=
True
,
name
=
"learning_rate"
)
warmup_epoch
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
warm_up_epoch
),
force_cpu
=
True
)
with
init_on_cpu
():
epoch
=
ops
.
floor
(
global_step
/
step_each_epoch
)
with
fluid
.
layers
.
control_flow
.
Switch
()
as
switch
:
with
switch
.
case
(
epoch
<
warmup_epoch
):
decayed_lr
=
learning_rate
*
(
global_step
/
(
step_each_epoch
*
warmup_epoch
))
fluid
.
layers
.
assign
(
input
=
decayed_lr
,
output
=
lr
)
with
switch
.
default
():
div_res
=
(
global_step
-
warmup_epoch
*
step_each_epoch
)
/
decay_epochs
div_res
=
ops
.
floor
(
div_res
)
decayed_lr
=
learning_rate
*
(
decay_rate
**
div_res
)
fluid
.
layers
.
assign
(
input
=
decayed_lr
,
output
=
lr
)
return
lr
def
lr_warmup
(
learning_rate
,
warmup_steps
,
start_lr
,
end_lr
):
""" Applies linear learning rate warmup for distributed training
Argument learning_rate can be float or a Variable
lr = lr + (warmup_rate * step / warmup_steps)
"""
assert
(
isinstance
(
end_lr
,
float
))
assert
(
isinstance
(
start_lr
,
float
))
linear_step
=
end_lr
-
start_lr
with
fluid
.
default_main_program
().
_lr_schedule_guard
():
lr
=
fluid
.
layers
.
tensor
.
create_global_var
(
shape
=
[
1
],
value
=
0.0
,
dtype
=
'float32'
,
persistable
=
True
,
name
=
"learning_rate_warmup"
)
global_step
=
fluid
.
layers
.
learning_rate_scheduler
.
_decay_step_counter
(
)
with
fluid
.
layers
.
control_flow
.
Switch
()
as
switch
:
with
switch
.
case
(
global_step
<
warmup_steps
):
decayed_lr
=
start_lr
+
linear_step
*
(
global_step
/
warmup_steps
)
fluid
.
layers
.
tensor
.
assign
(
decayed_lr
,
lr
)
with
switch
.
default
():
fluid
.
layers
.
tensor
.
assign
(
learning_rate
,
lr
)
return
lr
class
Optimizer
(
object
):
"""A class used to represent several optimizer methods
Attributes:
batch_size: batch size on all devices.
lr: learning rate.
lr_strategy: learning rate decay strategy.
l2_decay: l2_decay parameter.
momentum_rate: momentum rate when using Momentum optimizer.
step_epochs: piecewise decay steps.
num_epochs: number of total epochs.
total_images: total images.
step: total steps in the an epoch.
"""
def
__init__
(
self
,
args
):
self
.
batch_size
=
args
.
batch_size
self
.
lr
=
args
.
lr
self
.
lr_strategy
=
args
.
lr_strategy
self
.
l2_decay
=
args
.
l2_decay
self
.
momentum_rate
=
args
.
momentum_rate
self
.
step_epochs
=
args
.
step_epochs
self
.
num_epochs
=
args
.
num_epochs
self
.
warm_up_epochs
=
args
.
warm_up_epochs
self
.
decay_epochs
=
args
.
decay_epochs
self
.
decay_rate
=
args
.
decay_rate
self
.
total_images
=
args
.
total_images
self
.
step
=
int
(
math
.
ceil
(
float
(
self
.
total_images
)
/
self
.
batch_size
))
def
piecewise_decay
(
self
):
"""piecewise decay with Momentum optimizer
Returns:
a piecewise_decay optimizer
"""
bd
=
[
self
.
step
*
e
for
e
in
self
.
step_epochs
]
lr
=
[
self
.
lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
self
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
self
.
l2_decay
))
return
optimizer
def
cosine_decay
(
self
):
"""cosine decay with Momentum optimizer
Returns:
a cosine_decay optimizer
"""
learning_rate
=
fluid
.
layers
.
cosine_decay
(
learning_rate
=
self
.
lr
,
step_each_epoch
=
self
.
step
,
epochs
=
self
.
num_epochs
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
self
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
self
.
l2_decay
))
return
optimizer
def
cosine_decay_warmup
(
self
):
"""cosine decay with warmup
Returns:
a cosine_decay_with_warmup optimizer
"""
learning_rate
=
cosine_decay_with_warmup
(
learning_rate
=
self
.
lr
,
step_each_epoch
=
self
.
step
,
epochs
=
self
.
num_epochs
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
self
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
self
.
l2_decay
))
return
optimizer
def
exponential_decay_warmup
(
self
):
"""exponential decay with warmup
Returns:
a exponential_decay_with_warmup optimizer
"""
learning_rate
=
exponential_decay_with_warmup
(
learning_rate
=
self
.
lr
,
step_each_epoch
=
self
.
step
,
decay_epochs
=
self
.
step
*
self
.
decay_epochs
,
decay_rate
=
self
.
decay_rate
,
warm_up_epoch
=
self
.
warm_up_epochs
)
optimizer
=
fluid
.
optimizer
.
RMSProp
(
learning_rate
=
learning_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
self
.
l2_decay
),
momentum
=
self
.
momentum_rate
,
rho
=
0.9
,
epsilon
=
0.001
)
return
optimizer
def
linear_decay
(
self
):
"""linear decay with Momentum optimizer
Returns:
a linear_decay optimizer
"""
end_lr
=
0
learning_rate
=
fluid
.
layers
.
polynomial_decay
(
self
.
lr
,
self
.
step
,
end_lr
,
power
=
1
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
self
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
self
.
l2_decay
))
return
optimizer
def
adam_decay
(
self
):
"""Adam optimizer
Returns:
an adam_decay optimizer
"""
return
fluid
.
optimizer
.
Adam
(
learning_rate
=
self
.
lr
)
def
cosine_decay_RMSProp
(
self
):
"""cosine decay with RMSProp optimizer
Returns:
an cosine_decay_RMSProp optimizer
"""
learning_rate
=
fluid
.
layers
.
cosine_decay
(
learning_rate
=
self
.
lr
,
step_each_epoch
=
self
.
step
,
epochs
=
self
.
num_epochs
)
optimizer
=
fluid
.
optimizer
.
RMSProp
(
learning_rate
=
learning_rate
,
momentum
=
self
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
self
.
l2_decay
),
# Apply epsilon=1 on ImageNet dataset.
epsilon
=
1
)
return
optimizer
def
default_decay
(
self
):
"""default decay
Returns:
default decay optimizer
"""
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
self
.
lr
,
momentum
=
self
.
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
self
.
l2_decay
))
return
optimizer
def
create_optimizer
(
args
):
Opt
=
Optimizer
(
args
)
optimizer
=
getattr
(
Opt
,
args
.
lr_strategy
)()
return
optimizer
paddleslim/common/controller_server.py
浏览文件 @
4b8befd0
...
@@ -107,6 +107,8 @@ class ControllerServer(object):
...
@@ -107,6 +107,8 @@ class ControllerServer(object):
_logger
.
debug
(
"send message to {}: [{}]"
.
format
(
addr
,
_logger
.
debug
(
"send message to {}: [{}]"
.
format
(
addr
,
tokens
))
tokens
))
conn
.
close
()
conn
.
close
()
except
Exception
,
err
:
_logger
.
error
(
err
)
finally
:
finally
:
self
.
_socket_server
.
close
()
self
.
_socket_server
.
close
()
self
.
close
()
self
.
close
()
paddleslim/common/sa_controller.py
浏览文件 @
4b8befd0
...
@@ -75,7 +75,7 @@ class SAController(EvolutionaryController):
...
@@ -75,7 +75,7 @@ class SAController(EvolutionaryController):
iter
=
int
(
iter
)
iter
=
int
(
iter
)
if
iter
>
self
.
_iter
:
if
iter
>
self
.
_iter
:
self
.
_iter
=
iter
self
.
_iter
=
iter
temperature
=
self
.
_init_temperature
*
self
.
_reduce_rate
**
self
.
_iter
temperature
=
self
.
_init_temperature
*
self
.
_reduce_rate
**
self
.
_iter
if
(
reward
>
self
.
_reward
)
or
(
np
.
random
.
random
()
<=
math
.
exp
(
if
(
reward
>
self
.
_reward
)
or
(
np
.
random
.
random
()
<=
math
.
exp
(
(
reward
-
self
.
_reward
)
/
temperature
)):
(
reward
-
self
.
_reward
)
/
temperature
)):
self
.
_reward
=
reward
self
.
_reward
=
reward
...
@@ -98,7 +98,7 @@ class SAController(EvolutionaryController):
...
@@ -98,7 +98,7 @@ class SAController(EvolutionaryController):
new_tokens
=
tokens
[:]
new_tokens
=
tokens
[:]
index
=
int
(
len
(
self
.
_range_table
[
0
])
*
np
.
random
.
random
())
index
=
int
(
len
(
self
.
_range_table
[
0
])
*
np
.
random
.
random
())
new_tokens
[
index
]
=
np
.
random
.
randint
(
self
.
_range_table
[
0
][
index
],
new_tokens
[
index
]
=
np
.
random
.
randint
(
self
.
_range_table
[
0
][
index
],
self
.
_range_table
[
1
][
index
]
+
1
)
self
.
_range_table
[
1
][
index
])
_logger
.
debug
(
"change index[{}] from {} to {}"
.
format
(
index
,
tokens
[
_logger
.
debug
(
"change index[{}] from {} to {}"
.
format
(
index
,
tokens
[
index
],
new_tokens
[
index
]))
index
],
new_tokens
[
index
]))
if
self
.
_constrain_func
is
None
or
self
.
_max_try_times
is
None
:
if
self
.
_constrain_func
is
None
or
self
.
_max_try_times
is
None
:
...
...
paddleslim/core/graph_wrapper.py
浏览文件 @
4b8befd0
...
@@ -54,6 +54,9 @@ class VarWrapper(object):
...
@@ -54,6 +54,9 @@ class VarWrapper(object):
"""
"""
return
self
.
_var
.
name
return
self
.
_var
.
name
def
__repr__
(
self
):
return
self
.
_var
.
name
def
shape
(
self
):
def
shape
(
self
):
"""
"""
Get the shape of the varibale.
Get the shape of the varibale.
...
@@ -131,6 +134,11 @@ class OpWrapper(object):
...
@@ -131,6 +134,11 @@ class OpWrapper(object):
"""
"""
return
self
.
_op
.
type
return
self
.
_op
.
type
def
__repr__
(
self
):
return
"op[id: {}, type: {}; inputs: {}]"
.
format
(
self
.
idx
(),
self
.
type
(),
self
.
all_inputs
())
def
is_bwd_op
(
self
):
def
is_bwd_op
(
self
):
"""
"""
Whether this operator is backward op.
Whether this operator is backward op.
...
...
paddleslim/nas/sa_nas.py
浏览文件 @
4b8befd0
...
@@ -60,16 +60,17 @@ class SANAS(object):
...
@@ -60,16 +60,17 @@ class SANAS(object):
self
.
_init_temperature
=
init_temperature
self
.
_init_temperature
=
init_temperature
self
.
_is_server
=
is_server
self
.
_is_server
=
is_server
self
.
_configs
=
configs
self
.
_configs
=
configs
self
.
_key
s
=
hashlib
.
md5
(
str
(
self
.
_configs
)).
hexdigest
()
self
.
_key
=
hashlib
.
md5
(
str
(
self
.
_configs
)).
hexdigest
()
server_ip
,
server_port
=
server_addr
server_ip
,
server_port
=
server_addr
if
server_ip
==
None
or
server_ip
==
""
:
if
server_ip
==
None
or
server_ip
==
""
:
server_ip
=
self
.
_get_host_ip
()
server_ip
=
self
.
_get_host_ip
()
factory
=
SearchSpaceFactory
()
self
.
_search_space
=
factory
.
get_search_space
(
configs
)
# create controller server
# create controller server
if
self
.
_is_server
:
if
self
.
_is_server
:
factory
=
SearchSpaceFactory
()
self
.
_search_space
=
factory
.
get_search_space
(
configs
)
init_tokens
=
self
.
_search_space
.
init_tokens
()
init_tokens
=
self
.
_search_space
.
init_tokens
()
range_table
=
self
.
_search_space
.
range_table
()
range_table
=
self
.
_search_space
.
range_table
()
range_table
=
(
len
(
range_table
)
*
[
0
],
range_table
)
range_table
=
(
len
(
range_table
)
*
[
0
],
range_table
)
...
@@ -90,6 +91,7 @@ class SANAS(object):
...
@@ -90,6 +91,7 @@ class SANAS(object):
search_steps
=
search_steps
,
search_steps
=
search_steps
,
key
=
self
.
_key
)
key
=
self
.
_key
)
self
.
_controller_server
.
start
()
self
.
_controller_server
.
start
()
server_port
=
self
.
_controller_server
.
port
()
self
.
_controller_client
=
ControllerClient
(
self
.
_controller_client
=
ControllerClient
(
server_ip
,
server_port
,
key
=
self
.
_key
)
server_ip
,
server_port
,
key
=
self
.
_key
)
...
@@ -99,6 +101,9 @@ class SANAS(object):
...
@@ -99,6 +101,9 @@ class SANAS(object):
def
_get_host_ip
(
self
):
def
_get_host_ip
(
self
):
return
socket
.
gethostbyname
(
socket
.
gethostname
())
return
socket
.
gethostbyname
(
socket
.
gethostname
())
def
tokens2arch
(
self
,
tokens
):
return
self
.
_search_space
.
token2arch
(
self
.
tokens
)
def
next_archs
(
self
):
def
next_archs
(
self
):
"""
"""
Get next network architectures.
Get next network architectures.
...
...
paddleslim/nas/search_space/combine_search_space.py
浏览文件 @
4b8befd0
...
@@ -39,6 +39,7 @@ class CombineSearchSpace(object):
...
@@ -39,6 +39,7 @@ class CombineSearchSpace(object):
for
config_list
in
config_lists
:
for
config_list
in
config_lists
:
key
,
config
=
config_list
key
,
config
=
config_list
self
.
spaces
.
append
(
self
.
_get_single_search_space
(
key
,
config
))
self
.
spaces
.
append
(
self
.
_get_single_search_space
(
key
,
config
))
self
.
init_tokens
()
def
_get_single_search_space
(
self
,
key
,
config
):
def
_get_single_search_space
(
self
,
key
,
config
):
"""
"""
...
@@ -51,9 +52,11 @@ class CombineSearchSpace(object):
...
@@ -51,9 +52,11 @@ class CombineSearchSpace(object):
model space(class)
model space(class)
"""
"""
cls
=
SEARCHSPACE
.
get
(
key
)
cls
=
SEARCHSPACE
.
get
(
key
)
space
=
cls
(
config
[
'input_size'
],
config
[
'output_size'
],
block_mask
=
config
[
'block_mask'
]
if
'block_mask'
in
config
else
None
config
[
'block_num'
],
config
[
'block_mask'
])
space
=
cls
(
config
[
'input_size'
],
config
[
'output_size'
],
config
[
'block_num'
],
block_mask
=
block_mask
)
return
space
return
space
def
init_tokens
(
self
):
def
init_tokens
(
self
):
...
...
paddleslim/nas/search_space/mobilenetv1.py
浏览文件 @
4b8befd0
...
@@ -32,10 +32,12 @@ class MobileNetV1Space(SearchSpaceBase):
...
@@ -32,10 +32,12 @@ class MobileNetV1Space(SearchSpaceBase):
input_size
,
input_size
,
output_size
,
output_size
,
block_num
,
block_num
,
block_mask
,
scale
=
1.0
,
scale
=
1.0
,
class_dim
=
1000
):
class_dim
=
1000
):
super
(
MobileNetV1Space
,
self
).
__init__
(
input_size
,
output_size
,
super
(
MobileNetV1Space
,
self
).
__init__
(
input_size
,
output_size
,
block_num
)
block_num
,
block_mask
)
assert
self
.
block_mask
==
None
,
'MobileNetV1Space will use origin MobileNetV1 as seach space, so use input_size, output_size and block_num to search'
self
.
scale
=
scale
self
.
scale
=
scale
self
.
class_dim
=
class_dim
self
.
class_dim
=
class_dim
# self.head_num means the channel of first convolution
# self.head_num means the channel of first convolution
...
...
paddleslim/nas/search_space/mobilenetv2.py
浏览文件 @
4b8befd0
...
@@ -113,40 +113,69 @@ class MobileNetV2Space(SearchSpaceBase):
...
@@ -113,40 +113,69 @@ class MobileNetV2Space(SearchSpaceBase):
if
tokens
is
None
:
if
tokens
is
None
:
tokens
=
self
.
init_tokens
()
tokens
=
self
.
init_tokens
()
print
(
tokens
)
bottleneck_params_list
=
[]
self
.
bottleneck_params_list
=
[]
if
self
.
block_num
>=
1
:
if
self
.
block_num
>=
1
:
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
1
,
self
.
head_num
[
tokens
[
0
]],
1
,
1
,
3
))
(
1
,
self
.
head_num
[
tokens
[
0
]],
1
,
1
,
3
))
if
self
.
block_num
>=
2
:
if
self
.
block_num
>=
2
:
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
1
]],
self
.
filter_num1
[
tokens
[
2
]],
(
self
.
multiply
[
tokens
[
1
]],
self
.
filter_num1
[
tokens
[
2
]],
self
.
repeat
[
tokens
[
3
]],
2
,
self
.
k_size
[
tokens
[
4
]]))
self
.
repeat
[
tokens
[
3
]],
2
,
self
.
k_size
[
tokens
[
4
]]))
if
self
.
block_num
>=
3
:
if
self
.
block_num
>=
3
:
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
5
]],
self
.
filter_num1
[
tokens
[
6
]],
(
self
.
multiply
[
tokens
[
5
]],
self
.
filter_num1
[
tokens
[
6
]],
self
.
repeat
[
tokens
[
7
]],
2
,
self
.
k_size
[
tokens
[
8
]]))
self
.
repeat
[
tokens
[
7
]],
2
,
self
.
k_size
[
tokens
[
8
]]))
if
self
.
block_num
>=
4
:
if
self
.
block_num
>=
4
:
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
9
]],
self
.
filter_num2
[
tokens
[
10
]],
(
self
.
multiply
[
tokens
[
9
]],
self
.
filter_num2
[
tokens
[
10
]],
self
.
repeat
[
tokens
[
11
]],
2
,
self
.
k_size
[
tokens
[
12
]]))
self
.
repeat
[
tokens
[
11
]],
2
,
self
.
k_size
[
tokens
[
12
]]))
if
self
.
block_num
>=
5
:
if
self
.
block_num
>=
5
:
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
13
]],
self
.
filter_num3
[
tokens
[
14
]],
(
self
.
multiply
[
tokens
[
13
]],
self
.
filter_num3
[
tokens
[
14
]],
self
.
repeat
[
tokens
[
15
]],
2
,
self
.
k_size
[
tokens
[
16
]]))
self
.
repeat
[
tokens
[
15
]],
2
,
self
.
k_size
[
tokens
[
16
]]))
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
17
]],
self
.
filter_num4
[
tokens
[
18
]],
(
self
.
multiply
[
tokens
[
17
]],
self
.
filter_num4
[
tokens
[
18
]],
self
.
repeat
[
tokens
[
19
]],
1
,
self
.
k_size
[
tokens
[
20
]]))
self
.
repeat
[
tokens
[
19
]],
1
,
self
.
k_size
[
tokens
[
20
]]))
if
self
.
block_num
>=
6
:
if
self
.
block_num
>=
6
:
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
21
]],
self
.
filter_num5
[
tokens
[
22
]],
(
self
.
multiply
[
tokens
[
21
]],
self
.
filter_num5
[
tokens
[
22
]],
self
.
repeat
[
tokens
[
23
]],
2
,
self
.
k_size
[
tokens
[
24
]]))
self
.
repeat
[
tokens
[
23
]],
2
,
self
.
k_size
[
tokens
[
24
]]))
bottleneck_params_list
.
append
(
self
.
bottleneck_params_list
.
append
(
(
self
.
multiply
[
tokens
[
25
]],
self
.
filter_num6
[
tokens
[
26
]],
(
self
.
multiply
[
tokens
[
25
]],
self
.
filter_num6
[
tokens
[
26
]],
self
.
repeat
[
tokens
[
27
]],
1
,
self
.
k_size
[
tokens
[
28
]]))
self
.
repeat
[
tokens
[
27
]],
1
,
self
.
k_size
[
tokens
[
28
]]))
def
net_arch
(
input
):
def
_modify_bottle_params
(
output_stride
=
None
):
if
output_stride
is
not
None
and
output_stride
%
2
!=
0
:
raise
Exception
(
"output stride must to be even number"
)
if
output_stride
is
None
:
return
else
:
stride
=
2
for
i
,
layer_setting
in
enumerate
(
self
.
bottleneck_params_list
):
t
,
c
,
n
,
s
,
ks
=
layer_setting
stride
=
stride
*
s
if
stride
>
output_stride
:
s
=
1
self
.
bottleneck_params_list
[
i
]
=
(
t
,
c
,
n
,
s
,
ks
)
def
net_arch
(
input
,
end_points
=
None
,
decode_points
=
None
,
output_stride
=
None
):
_modify_bottle_params
(
output_stride
)
decode_ends
=
dict
()
def
check_points
(
count
,
points
):
if
points
is
None
:
return
False
else
:
if
isinstance
(
points
,
list
):
return
(
True
if
count
in
points
else
False
)
else
:
return
(
True
if
count
==
points
else
False
)
#conv1
#conv1
# all padding is 'SAME' in the conv2d, can compute the actual padding automatic.
# all padding is 'SAME' in the conv2d, can compute the actual padding automatic.
input
=
conv_bn_layer
(
input
=
conv_bn_layer
(
...
@@ -157,14 +186,21 @@ class MobileNetV2Space(SearchSpaceBase):
...
@@ -157,14 +186,21 @@ class MobileNetV2Space(SearchSpaceBase):
padding
=
'SAME'
,
padding
=
'SAME'
,
act
=
'relu6'
,
act
=
'relu6'
,
name
=
'mobilenetv2_conv1_1'
)
name
=
'mobilenetv2_conv1_1'
)
layer_count
=
1
if
check_points
(
layer_count
,
decode_points
):
decode_ends
[
layer_count
]
=
input
if
check_points
(
layer_count
,
end_points
):
return
input
,
decode_ends
# bottleneck sequences
# bottleneck sequences
i
=
1
i
=
1
in_c
=
int
(
32
*
self
.
scale
)
in_c
=
int
(
32
*
self
.
scale
)
for
layer_setting
in
bottleneck_params_list
:
for
layer_setting
in
self
.
bottleneck_params_list
:
t
,
c
,
n
,
s
,
k
=
layer_setting
t
,
c
,
n
,
s
,
k
=
layer_setting
i
+=
1
i
+=
1
input
=
self
.
_invresi_blocks
(
#print(input)
input
,
depthwise_output
=
self
.
_invresi_blocks
(
input
=
input
,
input
=
input
,
in_c
=
in_c
,
in_c
=
in_c
,
t
=
t
,
t
=
t
,
...
@@ -174,6 +210,33 @@ class MobileNetV2Space(SearchSpaceBase):
...
@@ -174,6 +210,33 @@ class MobileNetV2Space(SearchSpaceBase):
k
=
k
,
k
=
k
,
name
=
'mobilenetv2_conv'
+
str
(
i
))
name
=
'mobilenetv2_conv'
+
str
(
i
))
in_c
=
int
(
c
*
self
.
scale
)
in_c
=
int
(
c
*
self
.
scale
)
layer_count
+=
1
### decode_points and end_points means block num
if
check_points
(
layer_count
,
decode_points
):
decode_ends
[
layer_count
]
=
depthwise_output
if
check_points
(
layer_count
,
end_points
):
return
input
,
decode_ends
# last conv
input
=
conv_bn_layer
(
input
=
input
,
num_filters
=
int
(
1280
*
self
.
scale
)
if
self
.
scale
>
1.0
else
1280
,
filter_size
=
1
,
stride
=
1
,
padding
=
'SAME'
,
act
=
'relu6'
,
name
=
'mobilenetv2_conv'
+
str
(
i
+
1
))
input
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_size
=
7
,
pool_stride
=
1
,
pool_type
=
'avg'
,
global_pooling
=
True
,
name
=
'mobilenetv2_last_pool'
)
# if output_size is 1, add fc layer in the end
# if output_size is 1, add fc layer in the end
if
self
.
output_size
==
1
:
if
self
.
output_size
==
1
:
...
@@ -248,6 +311,8 @@ class MobileNetV2Space(SearchSpaceBase):
...
@@ -248,6 +311,8 @@ class MobileNetV2Space(SearchSpaceBase):
name
=
name
+
'_dwise'
,
name
=
name
+
'_dwise'
,
use_cudnn
=
False
)
use_cudnn
=
False
)
depthwise_output
=
bottleneck_conv
linear_out
=
conv_bn_layer
(
linear_out
=
conv_bn_layer
(
input
=
bottleneck_conv
,
input
=
bottleneck_conv
,
num_filters
=
num_filters
,
num_filters
=
num_filters
,
...
@@ -260,7 +325,7 @@ class MobileNetV2Space(SearchSpaceBase):
...
@@ -260,7 +325,7 @@ class MobileNetV2Space(SearchSpaceBase):
out
=
linear_out
out
=
linear_out
if
ifshortcut
:
if
ifshortcut
:
out
=
self
.
_shortcut
(
input
=
input
,
data_residual
=
out
)
out
=
self
.
_shortcut
(
input
=
input
,
data_residual
=
out
)
return
out
return
out
,
depthwise_output
def
_invresi_blocks
(
self
,
input
,
in_c
,
t
,
c
,
n
,
s
,
k
,
name
=
None
):
def
_invresi_blocks
(
self
,
input
,
in_c
,
t
,
c
,
n
,
s
,
k
,
name
=
None
):
"""Build inverted residual blocks.
"""Build inverted residual blocks.
...
@@ -276,7 +341,7 @@ class MobileNetV2Space(SearchSpaceBase):
...
@@ -276,7 +341,7 @@ class MobileNetV2Space(SearchSpaceBase):
Returns:
Returns:
Variable, layers output.
Variable, layers output.
"""
"""
first_block
=
self
.
_inverted_residual_unit
(
first_block
,
depthwise_output
=
self
.
_inverted_residual_unit
(
input
=
input
,
input
=
input
,
num_in_filter
=
in_c
,
num_in_filter
=
in_c
,
num_filters
=
c
,
num_filters
=
c
,
...
@@ -290,7 +355,7 @@ class MobileNetV2Space(SearchSpaceBase):
...
@@ -290,7 +355,7 @@ class MobileNetV2Space(SearchSpaceBase):
last_c
=
c
last_c
=
c
for
i
in
range
(
1
,
n
):
for
i
in
range
(
1
,
n
):
last_residual_block
=
self
.
_inverted_residual_unit
(
last_residual_block
,
depthwise_output
=
self
.
_inverted_residual_unit
(
input
=
last_residual_block
,
input
=
last_residual_block
,
num_in_filter
=
last_c
,
num_in_filter
=
last_c
,
num_filters
=
c
,
num_filters
=
c
,
...
@@ -299,4 +364,4 @@ class MobileNetV2Space(SearchSpaceBase):
...
@@ -299,4 +364,4 @@ class MobileNetV2Space(SearchSpaceBase):
filter_size
=
k
,
filter_size
=
k
,
expansion_factor
=
t
,
expansion_factor
=
t
,
name
=
name
+
'_'
+
str
(
i
+
1
))
name
=
name
+
'_'
+
str
(
i
+
1
))
return
last_residual_block
return
last_residual_block
,
depthwise_output
paddleslim/nas/search_space/search_space_base.py
浏览文件 @
4b8befd0
...
@@ -19,11 +19,19 @@ class SearchSpaceBase(object):
...
@@ -19,11 +19,19 @@ class SearchSpaceBase(object):
"""Controller for Neural Architecture Search.
"""Controller for Neural Architecture Search.
"""
"""
def
__init__
(
self
,
input_size
,
output_size
,
block_num
,
block_mask
,
*
argss
):
def
__init__
(
self
,
input_size
,
output_size
,
block_num
,
block_mask
,
*
args
):
"""init model config
"""
self
.
input_size
=
input_size
self
.
input_size
=
input_size
self
.
output_size
=
output_size
self
.
output_size
=
output_size
self
.
block_num
=
block_num
self
.
block_num
=
block_num
self
.
block_mask
=
block_mask
self
.
block_mask
=
block_mask
if
self
.
block_mask
is
not
None
:
assert
isinstance
(
self
.
block_mask
,
list
),
'Block_mask must be a list.'
print
(
"If block_mask is NOT None, we will use block_mask as major configs!"
)
def
init_tokens
(
self
):
def
init_tokens
(
self
):
"""Get init tokens in search space.
"""Get init tokens in search space.
...
...
paddleslim/prune/pruner.py
浏览文件 @
4b8befd0
...
@@ -528,33 +528,41 @@ class Pruner():
...
@@ -528,33 +528,41 @@ class Pruner():
Returns:
Returns:
list<VarWrapper>: A list of operators.
list<VarWrapper>: A list of operators.
"""
"""
_logger
.
debug
(
"######################search: {}######################"
.
format
(
op_node
))
visited
=
[
op_node
.
idx
()]
visited
=
[
op_node
.
idx
()]
stack
=
[]
stack
=
[]
brothers
=
[]
brothers
=
[]
for
op
in
graph
.
next_ops
(
op_node
):
for
op
in
graph
.
next_ops
(
op_node
):
if
(
op
.
type
()
!=
'conv2d'
)
and
(
op
.
type
()
!=
'fc'
)
and
(
if
(
"conv2d"
not
in
op
.
type
()
)
and
(
op
.
type
()
!=
'fc'
)
and
(
not
op
.
is_bwd_op
()):
not
op
.
is_bwd_op
())
and
(
not
op
.
is_opt_op
())
:
stack
.
append
(
op
)
stack
.
append
(
op
)
visited
.
append
(
op
.
idx
())
visited
.
append
(
op
.
idx
())
while
len
(
stack
)
>
0
:
while
len
(
stack
)
>
0
:
top_op
=
stack
.
pop
()
top_op
=
stack
.
pop
()
if
top_op
.
type
().
startswith
(
"elementwise_"
):
for
parent
in
graph
.
pre_ops
(
top_op
):
for
parent
in
graph
.
pre_ops
(
top_op
):
if
parent
.
idx
()
not
in
visited
and
(
if
parent
.
idx
()
not
in
visited
and
(
not
parent
.
is_bwd_op
())
and
(
not
parent
.
is_opt_op
()):
not
parent
.
is_bwd_op
()):
_logger
.
debug
(
"----------go back from {} to {}----------"
.
if
((
parent
.
type
()
==
'conv2d'
)
or
format
(
top_op
,
parent
))
(
parent
.
type
()
==
'fc'
)):
if
((
'conv2d'
in
parent
.
type
())
or
brothers
.
append
(
parent
)
(
parent
.
type
()
==
'fc'
)):
else
:
brothers
.
append
(
parent
)
stack
.
append
(
parent
)
else
:
visited
.
append
(
parent
.
idx
())
stack
.
append
(
parent
)
visited
.
append
(
parent
.
idx
())
for
child
in
graph
.
next_ops
(
top_op
):
for
child
in
graph
.
next_ops
(
top_op
):
if
(
child
.
type
()
!=
'conv2d'
)
and
(
child
.
type
()
!=
'fc'
)
and
(
if
(
'conv2d'
not
in
child
.
type
()
)
and
(
child
.
type
()
!=
'fc'
)
and
(
child
.
idx
()
not
in
visited
)
and
(
child
.
idx
()
not
in
visited
)
and
(
not
child
.
is_bwd_op
()):
not
child
.
is_bwd_op
())
and
(
not
child
.
is_opt_op
())
:
stack
.
append
(
child
)
stack
.
append
(
child
)
visited
.
append
(
child
.
idx
())
visited
.
append
(
child
.
idx
())
_logger
.
debug
(
"brothers: {}"
.
format
(
brothers
))
_logger
.
debug
(
"######################Finish search######################"
.
format
(
op_node
))
return
brothers
return
brothers
def
_cal_pruned_idx
(
self
,
name
,
param
,
ratio
,
axis
):
def
_cal_pruned_idx
(
self
,
name
,
param
,
ratio
,
axis
):
...
...
tests/test_prune.py
浏览文件 @
4b8befd0
...
@@ -15,7 +15,7 @@ import sys
...
@@ -15,7 +15,7 @@ import sys
sys
.
path
.
append
(
"../"
)
sys
.
path
.
append
(
"../"
)
import
unittest
import
unittest
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
prune
import
Pruner
from
p
addleslim.p
rune
import
Pruner
from
layers
import
conv_bn_layer
from
layers
import
conv_bn_layer
...
...
tests/test_sa_nas.py
浏览文件 @
4b8befd0
...
@@ -40,7 +40,11 @@ class TestSANAS(unittest.TestCase):
...
@@ -40,7 +40,11 @@ class TestSANAS(unittest.TestCase):
base_flops
=
flops
(
main_program
)
base_flops
=
flops
(
main_program
)
search_steps
=
3
search_steps
=
3
sa_nas
=
SANAS
(
configs
,
search_steps
=
search_steps
,
is_server
=
True
)
sa_nas
=
SANAS
(
configs
,
search_steps
=
search_steps
,
server_addr
=
(
""
,
0
),
is_server
=
True
)
for
i
in
range
(
search_steps
):
for
i
in
range
(
search_steps
):
archs
=
sa_nas
.
next_archs
()
archs
=
sa_nas
.
next_archs
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录