Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
3f198974
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3f198974
编写于
12月 05, 2019
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into 'develop'
Add distillation demo_guide link See merge request
!69
上级
14d09781
42d3d67b
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
155 addition
and
32 deletion
+155
-32
demo/distillation/distillation_demo.py
demo/distillation/distillation_demo.py
+21
-31
demo/utility.py
demo/utility.py
+126
-0
doc/demo_guide.md
doc/demo_guide.md
+8
-1
未找到文件。
demo/distillation/
train
.py
→
demo/distillation/
distillation_demo
.py
浏览文件 @
3f198974
...
...
@@ -13,8 +13,7 @@ import numpy as np
import
paddle.fluid
as
fluid
sys
.
path
.
append
(
sys
.
path
[
0
]
+
"/../"
)
import
models
import
imagenet_reader
as
reader
from
utility
import
add_arguments
,
print_arguments
from
utility
import
add_arguments
,
print_arguments
,
_download
,
_decompress
from
paddleslim.dist
import
merge
,
l2_loss
,
soft_label_loss
,
fsp_loss
logging
.
basicConfig
(
format
=
'%(asctime)s-%(levelname)s: %(message)s'
)
...
...
@@ -33,12 +32,12 @@ add_arg('lr_strategy', str, "piecewise_decay", "The learning rate decay
add_arg
(
'l2_decay'
,
float
,
3e-5
,
"The l2_decay parameter."
)
add_arg
(
'momentum_rate'
,
float
,
0.9
,
"The value of momentum_rate."
)
add_arg
(
'num_epochs'
,
int
,
120
,
"The number of total epochs."
)
add_arg
(
'data'
,
str
,
"
mnist"
,
"Which data to use. 'mnist
' or 'imagenet'"
)
add_arg
(
'data'
,
str
,
"
cifar10"
,
"Which data to use. 'cifar10
' or 'imagenet'"
)
add_arg
(
'log_period'
,
int
,
20
,
"Log period in batches."
)
add_arg
(
'model'
,
str
,
"MobileNet"
,
"Set the network to use."
)
add_arg
(
'pretrained_model'
,
str
,
None
,
"Whether to use pretrained model."
)
add_arg
(
'teacher_model'
,
str
,
"ResNet50"
,
"Set the teacher network to use."
)
add_arg
(
'teacher_pretrained_model'
,
str
,
".
./pretrain
/ResNet50_pretrained"
,
"Whether to use pretrained model."
)
add_arg
(
'teacher_pretrained_model'
,
str
,
"./ResNet50_pretrained"
,
"Whether to use pretrained model."
)
parser
.
add_argument
(
'--step_epochs'
,
nargs
=
'+'
,
type
=
int
,
default
=
[
30
,
60
,
90
],
help
=
"piecewise decay step"
)
# yapf: enable
...
...
@@ -76,12 +75,12 @@ def create_optimizer(args):
def
compress
(
args
):
if
args
.
data
==
"
mnist
"
:
import
paddle.dataset.
mnist
as
reader
train_reader
=
reader
.
train
()
val_reader
=
reader
.
test
()
if
args
.
data
==
"
cifar10
"
:
import
paddle.dataset.
cifar
as
reader
train_reader
=
reader
.
train
10
()
val_reader
=
reader
.
test
10
()
class_dim
=
10
image_shape
=
"
1,28,28
"
image_shape
=
"
3,32,32
"
elif
args
.
data
==
"imagenet"
:
import
imagenet_reader
as
reader
train_reader
=
reader
.
train
()
...
...
@@ -132,7 +131,7 @@ def compress(args):
val_reader
,
batch_size
=
args
.
batch_size
,
drop_last
=
True
)
val_program
=
student_program
.
clone
(
for_test
=
True
)
places
=
fluid
.
cuda_places
()
places
=
fluid
.
cuda_places
()
if
args
.
use_gpu
else
fluid
.
cpu_places
()
train_loader
.
set_sample_list_generator
(
train_reader
,
places
)
valid_loader
.
set_sample_list_generator
(
val_reader
,
place
)
...
...
@@ -146,11 +145,13 @@ def compress(args):
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
predict
=
teacher_model
.
net
(
image
,
class_dim
=
class_dim
)
#print("="*50+"teacher_model_params"+"="*50)
#for v in teacher_program.list_vars():
# print(v.name, v.shape)
#print("="*50+"teacher_model_params"+"="*50)
#for v in teacher_program.list_vars():
# print(v.name, v.shape)
exe
.
run
(
t_startup
)
_download
(
'http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar'
,
'.'
)
_decompress
(
'./ResNet50_pretrained.tar'
)
assert
args
.
teacher_pretrained_model
and
os
.
path
.
exists
(
args
.
teacher_pretrained_model
),
"teacher_pretrained_model should be set when teacher_model is not None."
...
...
@@ -158,7 +159,7 @@ def compress(args):
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
args
.
teacher_pretrained_model
,
var
.
name
)
)
and
var
.
name
!=
'
conv1_weights'
and
var
.
name
!=
'
fc_0.w_0'
and
var
.
name
!=
'fc_0.b_0'
)
and
var
.
name
!=
'fc_0.w_0'
and
var
.
name
!=
'fc_0.b_0'
fluid
.
io
.
load_vars
(
exe
,
...
...
@@ -173,19 +174,9 @@ def compress(args):
data_name_map
,
place
)
#print("="*50+"teacher_vars"+"="*50)
#for v in teacher_program.list_vars():
# if '_generated_var' not in v.name and 'fetch' not in v.name and 'feed' not in v.name:
# print(v.name, v.shape)
#return
with
fluid
.
program_guard
(
main
,
s_startup
):
l2_loss_v
=
l2_loss
(
"teacher_fc_0.tmp_0"
,
"fc_0.tmp_0"
,
main
)
fsp_loss_v
=
fsp_loss
(
"teacher_res2a_branch2a.conv2d.output.1.tmp_0"
,
"teacher_res3a_branch2a.conv2d.output.1.tmp_0"
,
"depthwise_conv2d_1.tmp_0"
,
"conv2d_3.tmp_0"
,
main
)
loss
=
avg_cost
+
l2_loss_v
+
fsp_loss_v
l2_loss
=
l2_loss
(
"teacher_fc_0.tmp_0"
,
"fc_0.tmp_0"
,
main
)
loss
=
avg_cost
+
l2_loss
opt
=
create_optimizer
(
args
)
opt
.
minimize
(
loss
)
exe
.
run
(
s_startup
)
...
...
@@ -196,17 +187,16 @@ def compress(args):
for
epoch_id
in
range
(
args
.
num_epochs
):
for
step_id
,
data
in
enumerate
(
train_loader
):
loss_1
,
loss_2
,
loss_3
,
loss_4
=
exe
.
run
(
loss_1
,
loss_2
,
loss_3
=
exe
.
run
(
parallel_main
,
feed
=
data
,
fetch_list
=
[
loss
.
name
,
avg_cost
.
name
,
l2_loss
_v
.
name
,
fsp_loss_v
.
name
loss
.
name
,
avg_cost
.
name
,
l2_loss
.
name
])
if
step_id
%
args
.
log_period
==
0
:
_logger
.
info
(
"train_epoch {} step {} loss {:.6f}, class loss {:.6f}, l2 loss {:.6f}, fsp loss {:.6f}"
.
format
(
epoch_id
,
step_id
,
loss_1
[
0
],
loss_2
[
0
],
loss_3
[
0
],
loss_4
[
0
]))
"train_epoch {} step {} loss {:.6f}, class loss {:.6f}, l2 loss {:.6f}"
.
format
(
epoch_id
,
step_id
,
loss_1
[
0
],
loss_2
[
0
],
loss_3
[
0
]))
val_acc1s
=
[]
val_acc5s
=
[]
for
step_id
,
data
in
enumerate
(
valid_loader
):
...
...
demo/utility.py
浏览文件 @
3f198974
...
...
@@ -20,6 +20,12 @@ import distutils.util
import
os
import
numpy
as
np
import
six
import
requests
import
shutil
import
tqdm
import
hashlib
import
tarfile
import
zipfile
import
logging
import
paddle.fluid
as
fluid
import
paddle.compat
as
cpt
...
...
@@ -30,6 +36,7 @@ logging.basicConfig(format='%(asctime)s-%(levelname)s: %(message)s')
_logger
=
logging
.
getLogger
(
__name__
)
_logger
.
setLevel
(
logging
.
INFO
)
DOWNLOAD_RETRY_LIMIT
=
3
def
print_arguments
(
args
):
"""Print argparse's arguments.
...
...
@@ -154,3 +161,122 @@ def load_persistable_nodes(executor, dirname, graph):
else
:
_logger
.
info
(
"Cannot find the var %s!!!"
%
(
node
.
name
()))
fluid
.
io
.
load_vars
(
executor
=
executor
,
dirname
=
dirname
,
vars
=
var_list
)
def
_download
(
url
,
path
,
md5sum
=
None
):
"""
Download from url, save to path.
url (str): download url
path (str): download to given path
"""
if
not
os
.
path
.
exists
(
path
):
os
.
makedirs
(
path
)
fname
=
os
.
path
.
split
(
url
)[
-
1
]
fullname
=
os
.
path
.
join
(
path
,
fname
)
retry_cnt
=
0
while
not
(
os
.
path
.
exists
(
fullname
)
and
_md5check
(
fullname
,
md5sum
)):
if
retry_cnt
<
DOWNLOAD_RETRY_LIMIT
:
retry_cnt
+=
1
else
:
raise
RuntimeError
(
"Download from {} failed. "
"Retry limit reached"
.
format
(
url
))
_logger
.
info
(
"Downloading {} from {}"
.
format
(
fname
,
url
))
req
=
requests
.
get
(
url
,
stream
=
True
)
if
req
.
status_code
!=
200
:
raise
RuntimeError
(
"Downloading from {} failed with code "
"{}!"
.
format
(
url
,
req
.
status_code
))
# For protecting download interupted, download to
# tmp_fullname firstly, move tmp_fullname to fullname
# after download finished
tmp_fullname
=
fullname
+
"_tmp"
total_size
=
req
.
headers
.
get
(
'content-length'
)
with
open
(
tmp_fullname
,
'wb'
)
as
f
:
if
total_size
:
for
chunk
in
tqdm
.
tqdm
(
req
.
iter_content
(
chunk_size
=
1024
),
total
=
(
int
(
total_size
)
+
1023
)
//
1024
,
unit
=
'KB'
):
f
.
write
(
chunk
)
else
:
for
chunk
in
req
.
iter_content
(
chunk_size
=
1024
):
if
chunk
:
f
.
write
(
chunk
)
shutil
.
move
(
tmp_fullname
,
fullname
)
return
fullname
def
_md5check
(
fullname
,
md5sum
=
None
):
if
md5sum
is
None
:
return
True
_logger
.
info
(
"File {} md5 checking..."
.
format
(
fullname
))
md5
=
hashlib
.
md5
()
with
open
(
fullname
,
'rb'
)
as
f
:
for
chunk
in
iter
(
lambda
:
f
.
read
(
4096
),
b
""
):
md5
.
update
(
chunk
)
calc_md5sum
=
md5
.
hexdigest
()
if
calc_md5sum
!=
md5sum
:
_logger
.
info
(
"File {} md5 check failed, {}(calc) != "
"{}(base)"
.
format
(
fullname
,
calc_md5sum
,
md5sum
))
return
False
return
True
def
_decompress
(
fname
):
"""
Decompress for zip and tar file
"""
_logger
.
info
(
"Decompressing {}..."
.
format
(
fname
))
# For protecting decompressing interupted,
# decompress to fpath_tmp directory firstly, if decompress
# successed, move decompress files to fpath and delete
# fpath_tmp and remove download compress file.
fpath
=
os
.
path
.
split
(
fname
)[
0
]
fpath_tmp
=
os
.
path
.
join
(
fpath
,
'tmp'
)
if
os
.
path
.
isdir
(
fpath_tmp
):
shutil
.
rmtree
(
fpath_tmp
)
os
.
makedirs
(
fpath_tmp
)
if
fname
.
find
(
'tar'
)
>=
0
:
with
tarfile
.
open
(
fname
)
as
tf
:
tf
.
extractall
(
path
=
fpath_tmp
)
elif
fname
.
find
(
'zip'
)
>=
0
:
with
zipfile
.
ZipFile
(
fname
)
as
zf
:
zf
.
extractall
(
path
=
fpath_tmp
)
else
:
raise
TypeError
(
"Unsupport compress file type {}"
.
format
(
fname
))
for
f
in
os
.
listdir
(
fpath_tmp
):
src_dir
=
os
.
path
.
join
(
fpath_tmp
,
f
)
dst_dir
=
os
.
path
.
join
(
fpath
,
f
)
_move_and_merge_tree
(
src_dir
,
dst_dir
)
shutil
.
rmtree
(
fpath_tmp
)
os
.
remove
(
fname
)
def
_move_and_merge_tree
(
src
,
dst
):
"""
Move src directory to dst, if dst is already exists,
merge src to dst
"""
if
not
os
.
path
.
exists
(
dst
):
shutil
.
move
(
src
,
dst
)
else
:
for
fp
in
os
.
listdir
(
src
):
src_fp
=
os
.
path
.
join
(
src
,
fp
)
dst_fp
=
os
.
path
.
join
(
dst
,
fp
)
if
os
.
path
.
isdir
(
src_fp
):
if
os
.
path
.
isdir
(
dst_fp
):
_move_and_merge_tree
(
src_fp
,
dst_fp
)
else
:
shutil
.
move
(
src_fp
,
dst_fp
)
elif
os
.
path
.
isfile
(
src_fp
)
and
\
not
os
.
path
.
isfile
(
dst_fp
):
shutil
.
move
(
src_fp
,
dst_fp
)
doc/demo_guide.md
浏览文件 @
3f198974
## [蒸馏]()
## [蒸馏](../demo/distillation/distillation_demo.py)
蒸馏demo默认使用ResNet50作为teacher网络,MobileNet作为student网络,此外还支持将teacher和student换成
[
models目录
](
../demo/models
)
支持的任意模型。
demo中对teahcer模型和student模型的一层特征图添加了l2_loss的蒸馏损失函数,使用时也可根据需要选择fsp_loss, soft_label_loss以及自定义的loss函数。
训练默认使用的是cifar10数据集,piecewise_decay学习率衰减策略,momentum优化器进行120轮蒸馏训练。使用者也可以简单地用args参数切换为使用ImageNet数据集,cosine_decay学习率衰减策略等其他训练配置。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录