提交 3c494419 编写于 作者: B baiyfbupt

update data

上级 482d368d
......@@ -4,7 +4,7 @@
### 1.1 量化
| 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型大小(MB) | 下载 |
| 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型体积(MB) | 下载 |
|:--:|:---:|:--:|:--:|:--:|
|MobileNetV1|-|70.99%/89.68%| xx | [下载链接]() |
|MobileNetV1|quant_post|xx%/xx%| xx | [下载链接]() |
......@@ -18,36 +18,36 @@
### 1.2 剪
### 1.2 剪
| 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型大小(MB) | FLOPs(M) | arm时延(ms) | P4时延(ms) | 下载 |
|:--:|:---:|:--:|:--:|:--:|:--:|:--:|:--:|
|MobileNetV1|-|70.99%/89.68%| xx | xx | xx | xx | [下载链接]() |
|MobileNetV1|uniform -xx%|xx%/xx%| xx | xx | xx | xx | [下载链接]() |
|MobileNetV1|sensitive -xx%|xx%/xx%| xx | xx | xx | xx | [下载链接]() |
| MobileNetV2 | - |72.15%/90.65%| xx | xx | xx | xx | [下载链接]() |
| MobileNetV2 | uniform -xx% |xx%/xx%| xx | xx | xx | xx | [下载链接]() |
| MobileNetV2 | sensitive -xx% |xx%/xx%| xx | xx | xx | xx | [下载链接]() |
| ResNet34 | - |74.57%/92.14%| xx | xx | xx | xx | [下载链接]() |
| ResNet34 | uniform -xx% |xx%/xx%| xx | xx | xx | xx | [下载链接]() |
| ResNet34 | auto -xx% |xx%/xx%| xx | xx | xx | xx | [下载链接]() |
| 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型体积(MB) | GFLOPs | 下载 |
|:--:|:---:|:--:|:--:|:--:|:--:|
| MobileNetV1 | Baseline | 70.99%/89.68% | 17 | 1.11 | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
| MobileNetV1 | uniform -50% | 69.4%/88.66% (-1.59%/-1.02%) | 9 | 0.56 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_uniform-50.tar) |
| MobileNetV1 | sensitive -30% | 70.4%/89.3% (-0.59%/-0.38%) | 12 | 0.74 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-30.tar) |
| MobileNetV1 | sensitive -50% | 69.8% / 88.9% (-1.19%/-0.78%) | 9 | 0.56 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-50.tar) |
| MobileNetV2 | - | 72.15%/90.65% | 15 | 0.59 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 | uniform -50% | 65.79%/86.11%(-6.35%/-4.47%) | 11 | 0.296 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_uniform-50.tar) |
| ResNet34 | - | 72.15%/90.65% | 84 | 7.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar) |
| ResNet34 | uniform -50% | 70.99%/89.95%(-1.36%/-0.87%) | 41 | 3.67 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_uniform-50.tar) |
| ResNet34 | auto -55.05% | 70.24%/89.63%(-2.04%/-1.06%) | 33 | 3.31 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_auto-55.tar) |
### 1.3 蒸馏
| 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型大小(MB) | 下载 |
| 模型 | 压缩方法 | Top-1/Top-5 Acc | 模型体积(MB) | 下载 |
|:--:|:---:|:--:|:--:|:--:|
| MobileNetV1 | - | 70.99%/89.68% | 17 | [下载链接]() |
|ResNet50_vd|-|79.12%/94.44%| 99 | [下载链接]() |
|MobileNetV1|ResNet50_vd<sup>[1](#trans1)</sup> distill|72.77%/90.68%| 17 | [下载链接]() |
| MobileNetV2 | - | 72.15%/90.65% | 15 | [下载链接]() |
| MobileNetV2 | ResNet50_vd distill | 74.28%/91.53% | 15 | [下载链接]() |
| ResNet50 | - | 76.50%/93.00% | 99 | [下载链接]() |
|ResNet101|-|77.56%/93.64%| 173 | [下载链接]() |
| ResNet50 | ResNet101 distill | 77.29%/93.65% | 99 | [下载链接]() |
| MobileNetV1 | student | 70.99%/89.68% | 17 | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
|ResNet50_vd|teacher|79.12%/94.44%| 99 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) |
|MobileNetV1|ResNet50_vd<sup>[1](#trans1)</sup> distill|72.77%/90.68%(+1.78%/+1.00%)| 17 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_distilled.tar) |
| MobileNetV2 | student | 72.15%/90.65% | 15 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 | ResNet50_vd distill | 74.28%/91.53%(+2.13%/+0.88%) | 15 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_distilled.tar) |
| ResNet50 | student | 76.50%/93.00% | 99 | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) |
|ResNet101|teacher|77.56%/93.64%| 173 | [下载链接](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar) |
| ResNet50 | ResNet101 distill | 77.29%/93.65%(+0.79%/+0.65%) | 99 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_distilled.tar) |
!!! note "Note"
......@@ -56,13 +56,11 @@
## 2. 目标检测
数据集:Pasacl VOC & COCO 2017
### 2.1 量化
数据集: COCO 2017
| 模型 | 压缩方法 | 数据集 | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型大小(MB) | 下载 |
| 模型 | 压缩方法 | 数据集 | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型体积(MB) | 下载 |
| :----------------------------: | :---------: | :----: | :-------: | :------------: | :------------: | :------------: | :------------: | :----------: |
| MobileNet-V1-YOLOv3 | - | COCO | 8 | 29.3 | 29.3 | 27.1 | xx | [下载链接]() |
| MobileNet-V1-YOLOv3 | quant_post | COCO | 8 | xx | xx | xx | xx | [下载链接]() |
......@@ -77,7 +75,7 @@
| 模型 | 压缩方法 | Image/GPU | 输入尺寸 | Easy/Medium/Hard | 模型大小(MB) | 下载 |
| 模型 | 压缩方法 | Image/GPU | 输入尺寸 | Easy/Medium/Hard | 模型体积(MB) | 下载 |
| :------------: | :---------: | :-------: | :------: | :---------------: | :------------: | :----------: |
| BlazeFace | - | 8 | 640 | 0.915/0.892/0.797 | xx | [下载链接]() |
| BlazeFace | quant_post | 8 | 640 | xx/xx/xx | xx | [下载链接]() |
......@@ -89,36 +87,36 @@
| BlazeFace-NAS | quant_post | 8 | 640 | xx/xx/xx | xx | [下载链接]() |
| BlazeFace-NAS | quant_aware | 8 | 640 | xx/xx/xx | xx | [下载链接]() |
### 2.2 剪
### 2.2 剪
数据集:Pasacl VOC & COCO 2017
| 模型 | 压缩方法 | 数据集 | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型大小(MB) | FLOPs(M) | arm时延(ms) | P4时延(ms) | 下载 |
| :----------------------------: | :-------------: | :--------: | :-------: | :------------: | :------------: | :------------: | :----------: | :--------: | :-----------: | :----------: | :----------: |
| MobileNet-V1-YOLOv3 | - | Pasacl VOC | 8 | 76.2 | 76.7 | 75.3 | xx | xx | xx | xx | [下载链接]() |
| MobileNet-V1-YOLOv3 | sensitive -xx% | Pasacl VOC | 8 | xx | xx | xx | xx | xx | xx | xx | [下载链接]() |
| MobileNet-V1-YOLOv3 | - | COCO | 8 | 29.3 | 29.3 | 27.1 | xx | xx | xx | xx | [下载链接]() |
| MobileNet-V1-YOLOv3 | sensitive -xx% | COCO | 8 | xx | xx | xx | xx | xx | xx | xx | [下载链接]() |
| R50-dcn-YOLOv3 | - | COCO | 8 | 39.1 | xx | xx | xx | xx | xx | xx | [下载链接]() |
| R50-dcn-YOLOv3 | sensitive -xx% | COCO | 8 | xx | xx | xx | xx | xx | xx | xx | [下载链接]() |
| R50-dcn-YOLOv3 | sensitive -xx% | COCO | 8 | xx | xx | xx | xx | xx | xx | xx | [下载链接]() |
| R50-dcn-YOLOv3 obj365_pretrain | - | COCO | 8 | 41.4 | xx | xx | xx | xx | xx | xx | [下载链接]() |
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -xx% | COCO | 8 | xx | xx | xx | xx | xx | xx | xx | [下载链接]() |
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -xx% | COCO | 8 | xx | xx | xx | xx | xx | xx | xx | [下载链接]() |
| 模型 | 压缩方法 | 数据集 | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型体积(MB) | GFLOPs (608*608) | 下载 |
| :----------------------------: | :---------------: | :--------: | :-------: | :------------: | :------------: | :------------: | :----------: | :--------------: | :----------------------------------------------------------: |
| MobileNet-V1-YOLOv3 | Baseline | Pascal VOC | 8 | 76.2 | 76.7 | 75.3 | 94 | 40.49 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| MobileNet-V1-YOLOv3 | sensitive -52.88% | Pascal VOC | 8 | 77.6 (+1.4) | 77.7 (1.0) | 75.5 (+0.2) | 31 | 19.08 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_voc_prune.tar) |
| MobileNet-V1-YOLOv3 | - | COCO | 8 | 29.3 | 29.3 | 27.0 | 95 | 41.35 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1-YOLOv3 | sensitive -51.77% | COCO | 8 | 26.0 (-3.3) | 25.1 (-4.2) | 22.6 (-4.4) | 32 | 19.94 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_prune.tar) |
| R50-dcn-YOLOv3 | - | COCO | 8 | 39.1 | - | - | 177 | 89.60 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn.tar) |
| R50-dcn-YOLOv3 | sensitive -9.37% | COCO | 8 | 39.3 (+0.2) | - | - | 150 | 81.20 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune.tar) |
| R50-dcn-YOLOv3 | sensitive -24.68% | COCO | 8 | 37.3 (-1.8) | - | - | 113 | 67.48 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune578.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | - | COCO | 8 | 41.4 | - | - | 177 | 89.60 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -9.37% | COCO | 8 | 40.5 (-0.9) | - | - | 150 | 81.20 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -24.68% | COCO | 8 | 37.8 (-3.3) | - | - | 113 | 67.48 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune578.tar) |
### 2.3 蒸馏
数据集:Pasacl VOC & COCO 2017
| 模型 | 压缩方法 | 数据集 | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型大小(MB) | 下载 |
| :-----------------: | :---------------------: | :--------: | :-------: | :------------: | :------------: | :------------: | :------------: | :----------: |
| MobileNet-V1-YOLOv3 | - | Pascal VOC | 8 | 76.2 | 76.7 | 75.3 | 94 | [下载链接]() |
| ResNet34-YOLOv3 | - | Pascal VOC | 8 | 82.6 | 81.9 | 80.1 | 162 | [下载链接]() |
| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill | Pascal VOC | 8 | 79.0 | 78.2 | 75.5 | 94 | [下载链接]() |
| MobileNet-V1-YOLOv3 | - | COCO | 8 | 29.3 | 29.3 | 27.0 | 95 | [下载链接]() |
| ResNet34-YOLOv3 | - | COCO | 8 | 36.2 | 34.3 | 31.4 | 163 | [下载链接]() |
| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill | COCO | 8 | 31.4 | 30.0 | 27.1 | 95 | [下载链接]() |
| 模型 | 压缩方法 | 数据集 | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型体积(MB) | 下载 |
| :-----------------: | :---------------------: | :--------: | :-------: | :------------: | :------------: | :------------: | :------------: | :----------------------------------------------------------: |
| MobileNet-V1-YOLOv3 | - | Pascal VOC | 8 | 76.2 | 76.7 | 75.3 | 94 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| ResNet34-YOLOv3 | - | Pascal VOC | 8 | 82.6 | 81.9 | 80.1 | 162 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill | Pascal VOC | 8 | 79.0 (+2.8) | 78.2 (+1.5) | 75.5 (+0.2) | 94 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_voc_distilled.tar) |
| MobileNet-V1-YOLOv3 | - | COCO | 8 | 29.3 | 29.3 | 27.0 | 95 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| ResNet34-YOLOv3 | - | COCO | 8 | 36.2 | 34.3 | 31.4 | 163 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill | COCO | 8 | 31.4 (+2.1) | 30.0 (+0.7) | 27.1 (+0.1) | 95 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_distilled.tar) |
## 3. 图像分割
......@@ -127,7 +125,7 @@
### 3.1 量化
| 模型 | 压缩方法 | mIoU | 模型大小(MB) | 下载 |
| 模型 | 压缩方法 | mIoU | 模型体积(MB) | 下载 |
| :--------------------: | :---------: | :---: | :------------: | :----------: |
| DeepLabv3+/MobileNetv1 | - | 63.26 | xx | [下载链接]() |
| DeepLabv3+/MobileNetv1 | quant_post | xx | xx | [下载链接]() |
......@@ -136,14 +134,11 @@
| DeepLabv3+/MobileNetv2 | quant_post | xx | xx | [下载链接]() |
| DeepLabv3+/MobileNetv2 | quant_aware | xx | xx | [下载链接]() |
### 3.2 剪枝
| 模型 | 压缩方法 | mIoU | 模型大小(MB) | FLOPs(M) | arm时延(ms) | P4时延(ms) | 下载 |
| :--------------------: | :--------: | :---: | :------------: | :--------: | :-----------: | :----------: | :----------: |
| DeepLabv3+/MobileNetv2 | - | 69.81 | xx | xx | xx | xx | [下载链接]() |
| DeepLabv3+/MobileNetv2 | prune -xx% | xx | xx | xx | xx | xx | [下载链接]() |
### 3.2 剪裁
| 模型 | 压缩方法 | mIoU | 模型体积(MB) | GFLOPs | 下载 |
| :-------: | :---------------: | :-----------: | :------------: | :----: | :----------: |
| fast-scnn | baseline | 69.64 | 11 | 14.41 | [下载链接]() |
| fast-scnn | uniform -17.07% | 69.58 (-0.06) | 8.5 | 11.95 | [下载链接]() |
| fast-scnn | sensitive -47.60% | 66.68 (-2.96) | 5.7 | 7.55 | [下载链接]() |
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册