Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
23147e2d
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
23147e2d
编写于
11月 12, 2019
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into 'develop'
new quant aware api See merge request
!21
上级
a0d17e44
951d7b25
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
206 addition
and
0 deletion
+206
-0
paddleslim/quant/__init__.py
paddleslim/quant/__init__.py
+1
-0
paddleslim/quant/quanter.py
paddleslim/quant/quanter.py
+205
-0
未找到文件。
paddleslim/quant/__init__.py
浏览文件 @
23147e2d
...
...
@@ -12,4 +12,5 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
.quanter
import
quant_aware
,
quant_post
,
convert
from
.quant_embedding
import
quant_embedding
paddleslim/quant/quanter.py
0 → 100644
浏览文件 @
23147e2d
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
copy
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.framework
import
IrGraph
from
paddle.fluid.contrib.slim.quantization
import
QuantizationTransformPass
from
paddle.fluid.contrib.slim.quantization
import
QuantizationFreezePass
from
paddle.fluid.contrib.slim.quantization
import
ConvertToInt8Pass
from
paddle.fluid.contrib.slim.quantization
import
TransformForMobilePass
from
paddle.fluid
import
core
WEIGHT_QUANTIZATION_TYPES
=
[
'abs_max'
,
'channel_wise_abs_max'
,
'range_abs_max'
,
'moving_average_abs_max'
]
ACTIVATION_QUANTIZATION_TYPES
=
[
'abs_max'
,
'range_abs_max'
,
'moving_average_abs_max'
]
VALID_DTYPES
=
[
'int8'
]
_quant_config_default
=
{
# weight quantize type, default is 'abs_max'
'weight_quantize_type'
:
'abs_max'
,
# activation quantize type, default is 'abs_max'
'activation_quantize_type'
:
'abs_max'
,
# weight quantize bit num, default is 8
'weight_bits'
:
8
,
# activation quantize bit num, default is 8
'activation_bits'
:
8
,
# ops of name_scope in not_quant_pattern list, will not be quantized
'not_quant_pattern'
:
[
'skip_quant'
],
# ops of type in quantize_op_types, will be quantized
'quantize_op_types'
:
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
],
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
'dtype'
:
'int8'
,
# window size for 'range_abs_max' quantization. defaulf is 10000
'window_size'
:
10000
,
# The decay coefficient of moving average, default is 0.9
'moving_rate'
:
0.9
,
# if set quant_weight_only True, then only quantize parameters of layers which need to be quantized,
# and activations will not be quantized.
'quant_weight_only'
:
False
}
def
_parse_configs
(
user_config
):
"""
check user configs is valid, and set default value if user not config.
Args:
user_config(dict):the config of user.
Return:
configs(dict): final configs will be used.
"""
configs
=
copy
.
deepcopy
(
_quant_config_default
)
configs
.
update
(
user_config
)
# check configs is valid
assert
configs
[
'weight_quantize_type'
]
in
WEIGHT_QUANTIZATION_TYPES
,
\
"Unknown weight_quantize_type: '%s'. It can only be "
+
" "
.
join
(
WEIGHT_QUANTIZATION_TYPES
)
assert
configs
[
'activation_quantize_type'
]
in
ACTIVATION_QUANTIZATION_TYPES
,
\
"Unknown activation_quantize_type: '%s'. It can only be "
+
" "
.
join
(
ACTIVATION_QUANTIZATION_TYPES
)
assert
isinstance
(
configs
[
'weight_bits'
],
int
),
\
"weight_bits must be int value."
assert
(
configs
[
'weight_bits'
]
>=
1
and
configs
[
'weight_bits'
]
<=
16
),
\
"weight_bits should be between 1 and 16."
assert
isinstance
(
configs
[
'activation_bits'
],
int
),
\
"activation_bits must be int value."
assert
(
configs
[
'activation_bits'
]
>=
1
and
configs
[
'activation_bits'
]
<=
16
),
\
"activation_bits should be between 1 and 16."
assert
isinstance
(
configs
[
'not_quant_pattern'
],
list
),
\
"not_quant_pattern must be a list"
assert
isinstance
(
configs
[
'quantize_op_types'
],
list
),
\
"quantize_op_types must be a list"
assert
isinstance
(
configs
[
'dtype'
],
str
),
\
"dtype must be a str."
assert
(
configs
[
'dtype'
]
in
VALID_DTYPES
),
\
"dtype can only be "
+
" "
.
join
(
VALID_DTYPES
)
assert
isinstance
(
configs
[
'window_size'
],
int
),
\
"window_size must be int value, window size for 'range_abs_max' quantization, default is 10000."
assert
isinstance
(
configs
[
'moving_rate'
],
float
),
\
"moving_rate must be float value, The decay coefficient of moving average, default is 0.9."
assert
isinstance
(
configs
[
'quant_weight_only'
],
bool
),
\
"quant_weight_only must be bool value, if set quant_weight_only True, "
\
"then only quantize parameters of layers which need to be quantized, "
\
" and activations will not be quantized."
return
configs
def
quant_aware
(
program
,
place
,
config
,
scope
=
None
,
for_test
=
False
):
"""
add trainable quantization ops in program.
Args:
program(fluid.Program): program
scope(fluid.Scope): the scope to store var, it's should be the value of program's scope, usually it's fluid.global_scope().
place(fluid.CPUPlace or fluid.CUDAPlace): place
config(dict): configs for quantization, default values are in quant_config_default dict.
for_test: if program is test program, for_test should be set True, else False.
Return:
fluid.Program: user can finetune this quantization program to enhance the accuracy.
"""
scope
=
fluid
.
global_scope
()
if
not
scope
else
scope
assert
isinstance
(
config
,
dict
),
"config must be dict"
assert
'weight_quantize_type'
in
config
.
keys
(
),
'weight_quantize_type must be configured'
assert
'activation_quantize_type'
in
config
.
keys
(
),
'activation_quantize_type must be configured'
config
=
_parse_configs
(
config
)
main_graph
=
IrGraph
(
core
.
Graph
(
program
.
desc
),
for_test
=
for_test
)
transform_pass
=
QuantizationTransformPass
(
scope
=
scope
,
place
=
place
,
weight_bits
=
config
[
'weight_bits'
],
activation_bits
=
config
[
'activation_bits'
],
activation_quantize_type
=
config
[
'activation_quantize_type'
],
weight_quantize_type
=
config
[
'weight_quantize_type'
],
window_size
=
config
[
'window_size'
],
moving_rate
=
config
[
'moving_rate'
],
quantizable_op_type
=
config
[
'quantize_op_types'
],
skip_pattern
=
config
[
'not_quant_pattern'
])
transform_pass
.
apply
(
main_graph
)
if
for_test
:
quant_program
=
main_graph
.
to_program
()
else
:
quant_program
=
fluid
.
CompiledProgram
(
main_graph
.
graph
)
return
quant_program
def
quant_post
(
program
,
place
,
config
,
scope
=
None
):
"""
add quantization ops in program. the program returned is not trainable.
Args:
program(fluid.Program): program
scope(fluid.Scope): the scope to store var, it's should be the value of program's scope, usually it's fluid.global_scope().
place(fluid.CPUPlace or fluid.CUDAPlace): place
config(dict): configs for quantization, default values are in quant_config_default dict.
for_test: is for test program.
Return:
fluid.Program: the quantization program is not trainable.
"""
pass
def
convert
(
program
,
scope
,
place
,
config
,
save_int8
=
False
):
"""
add quantization ops in program. the program returned is not trainable.
Args:
program(fluid.Program): program
scope(fluid.Scope): the scope to store var, when is None will use fluid.global_scope()
place(fluid.CPUPlace or fluid.CUDAPlace): place
config(dict): configs for quantization, default values are in quant_config_default dict.
save_int8: is export int8 freezed program.
Return:
fluid.Program: freezed program which can be used for inference.
parameters is float32 type, but it's value in int8 range.
fluid.Program: freezed int8 program which can be used for inference.
if save_int8 is False, this value is None.
"""
test_graph
=
IrGraph
(
core
.
Graph
(
program
.
desc
),
for_test
=
True
)
# Freeze the graph after training by adjusting the quantize
# operators' order for the inference.
freeze_pass
=
QuantizationFreezePass
(
scope
=
scope
,
place
=
place
,
weight_quantize_type
=
config
[
'weight_quantize_type'
])
freeze_pass
.
apply
(
test_graph
)
freezed_program
=
test_graph
.
to_program
()
if
save_int8
:
convert_int8_pass
=
ConvertToInt8Pass
(
scope
=
fluid
.
global_scope
(),
place
=
place
)
convert_int8_pass
.
apply
(
test_graph
)
freezed_program_int8
=
test_graph
.
to_program
()
return
freezed_program
,
freezed_program_int8
else
:
return
freezed_program
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录