未验证 提交 22ec8eae 编写于 作者: C ceci3 提交者: GitHub

update readme (#1576)

上级 53a34ed2
......@@ -81,6 +81,7 @@ ACT相比传统的模型压缩方法,
| [图像分类](./image_classification) | InceptionV3 | 79.14 | 78.32 | 4.79 | 1.47 | **3.26** | NVIDIA Tesla T4 |
| [图像分类](./image_classification) | EfficientNetB0 | 77.02 | 74.27 | 1.95 | 1.44 | **1.35** | NVIDIA Tesla T4 |
| [图像分类](./image_classification) | GhostNet_x1_0 | 74.02 | 72.62 | 2.93 | 1.03 | **2.84** | NVIDIA Tesla T4 |
| [图像分类](./image_classification) | ViT_base_patch16_224 | 81.89 | 82.05 | 367.17 | 51.70 | **7.10** | NVIDIA Tesla T4 |
| [语义分割](./semantic_segmentation) | PP-HumanSeg-Lite | 92.87 | 92.35 | 56.36 | 37.71 | **1.49** | SDM710 |
| [语义分割](./semantic_segmentation) | PP-LiteSeg | 77.04 | 76.93 | 1.43 | 1.16 | **1.23** | NVIDIA Tesla T4 |
| [语义分割](./semantic_segmentation) | HRNet | 78.97 | 78.90 | 8.188 | 5.812 | **1.41** | NVIDIA Tesla T4 |
......
......@@ -45,8 +45,8 @@
| MobileNetV3_large_x1_0 | 量化+蒸馏 | 74.04 | - | 9.85 | [Config](./configs/MobileNetV3_large_x1_0/qat_dis.yaml) | [Model](https://paddle-slim-models.bj.bcebos.com/act/MobileNetV3_large_x1_0_QAT.tar) |
| MobileNetV3_large_x1_0_ssld | Baseline | 78.96 | - | 16.62 | - | [Model](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_ssld_infer.tar) |
| MobileNetV3_large_x1_0_ssld | 量化+蒸馏 | 77.17 | - | 9.85 | [Config](./configs/MobileNetV3_large_x1_0/qat_dis.yaml) | [Model](https://paddle-slim-models.bj.bcebos.com/act/MobileNetV3_large_x1_0_ssld_QAT.tar) |
| ViT_base_patch16_224 | Baseline | 81.89 | - | - | - | [Model](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_224_infer.tar) |
| ViT_base_patch16_224 | 量化+蒸馏 | 82.05 | - | - | [Config](./configs/VIT/qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/ViT_base_patch16_224_QAT.tar) |
| ViT_base_patch16_224 | Baseline | 81.89 | 367.17(batch_size=40) | - | - | [Model](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_224_infer.tar) |
| ViT_base_patch16_224 | 量化+蒸馏 | 82.05 | 51.70(batch_size=40) | - | [Config](./configs/VIT/qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/ViT_base_patch16_224_QAT.tar) |
- ARM CPU 测试环境:`SDM865(4xA77+4xA55)`
- Nvidia GPU 测试环境:
......
......@@ -31,6 +31,7 @@
| ERNIE 3.0-Medium | 剪枝+量化训练| 74.17 | 56.84 | 59.75 | 80.54 | 76.03 | 76.97 | 80.80 | 72.16 |
| 模型 | 策略 | 报销工单数据 |
|:------:|:------:|:------:|
| UIE-base | Base模型 | [91.83](https://bj.bcebos.com/v1/paddle-slim-models/act/uie_base.tar) |
| UIE-base | 量化训练 | [95.80](https://bj.bcebos.com/v1/paddle-slim-models/act/uie_base_qat_model.tar) |
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册