Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
22224c11
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
22224c11
编写于
11月 25, 2019
作者:
S
slf12
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix details
上级
e3d6c437
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
3 addition
and
3 deletion
+3
-3
demo/quant/quant_post/README.md
demo/quant/quant_post/README.md
+3
-3
未找到文件。
demo/quant/quant_post/README.md
浏览文件 @
22224c11
...
...
@@ -25,8 +25,8 @@ quant_post(executor,
-
model_filename(str, optional): 模型文件名,如果需要量化的模型的参数存在一个文件中,则需要设置
``model_filename``
为模型文件的名称,否则设置为
``None``
即可。默认值是
``None``
。
-
params_filename(str): 参数文件名,如果需要量化的模型的参数存在一个文件中,则需要设置
``params_filename``
为参数文件的名称,否则设置为
``None``
即可。默认值是
``None``
。
-
batch_size(int): 每个batch的图片数量。默认值为16 。
-
batch_nums(int, optional): 迭代次数。如果设置为
``None``
,则会一
只
运行到
``sample_generator``
迭代结束, 否则,迭代次数为
``batch_nums``
, 也就是说参与对
``Scale``
进行校正的样本个数为
``'batch_nums' * 'batch_size' ``
.
-
scope(fluid.Scope, optional): 用来获取和写入
``Variable``
, 如果设置为
``None``
,则使用
``fluid.global_scope()``
.
-
batch_nums(int, optional): 迭代次数。如果设置为
``None``
,则会一
直
运行到
``sample_generator``
迭代结束, 否则,迭代次数为
``batch_nums``
, 也就是说参与对
``Scale``
进行校正的样本个数为
``'batch_nums' * 'batch_size' ``
.
-
scope(fluid.Scope, optional): 用来获取和写入
``Variable``
, 如果设置为
``None``
,则使用
``fluid.global_scope()``
.
默认值是
``None``
.
-
algo(str): 量化时使用的算法名称,可为
``'KL'``
或者
``'direct'``
。该参数仅针对激活值的量化,因为参数值的量化使用的方式为
``'channel_wise_abs_max'``
. 当
``algo``
设置为
``'direct'``
时,使用
``'abs_max'``
计算
``Scale``
值,当设置为
``'KL'``
时,则使用
``KL``
散度的方法来计算
``Scale``
值。默认值为
``'KL'``
。
-
quantizable_op_type(list[str]): 需要量化的
``op``
类型列表。默认值为
``["conv2d", "depthwise_conv2d", "mul"]``
。
...
...
@@ -48,7 +48,7 @@ quant_post(executor,
在当前文件夹下创建
``'pretrain'``
文件夹,将
``mobilenetv1``
模型在该文件夹下解压,解压后的目录为
``pretrain/MobileNetV1_pretrained``
### 导出模型
通过运行以下命令可将模型转化为离线量化接口:
通过运行以下命令可将模型转化为离线量化接口
可用的模型
:
```
python export_model.py --model "MobileNet" --pretrained_model ./pretrain/MobileNetV1_pretrained --data imagenet
```
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录