Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
1e4656fe
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 1 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1e4656fe
编写于
2月 24, 2020
作者:
W
whs
提交者:
GitHub
2月 24, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add PaddleLite time cost and TensorRT FPS (#147) (#149)
上级
5668782b
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
67 addition
and
35 deletion
+67
-35
docs/en/model_zoo_en.md
docs/en/model_zoo_en.md
+33
-17
docs/zh_cn/model_zoo.md
docs/zh_cn/model_zoo.md
+34
-18
未找到文件。
docs/en/model_zoo_en.md
浏览文件 @
1e4656fe
...
...
@@ -144,18 +144,26 @@ Dataset:WIDER-FACE
Dataset:Pasacl VOC & COCO 2017
| Model | Method | Dataset | Image/GPU | Input 608 Box AP | Input 416 Box AP | Input 320 Box AP | Model Size(MB) | GFLOPs (608
*
608) | Download |
| :----------------------------: | :---------------: | :--------: | :-------: | :--------------: | :--------------: | :--------------: | :------------: | :--------------: | :----------------------------------------------------------: |
| MobileNet-V1-YOLOv3 | Baseline | Pascal VOC | 8 | 76.2 | 76.7 | 75.3 | 94 | 40.49 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar
)
|
| MobileNet-V1-YOLOv3 | sensitive -52.88% | Pascal VOC | 8 | 77.6 (+1.4) | 77.7 (1.0) | 75.5 (+0.2) | 31 | 19.08 |
[
model
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_voc_prune.tar
)
|
| MobileNet-V1-YOLOv3 | - | COCO | 8 | 29.3 | 29.3 | 27.0 | 95 | 41.35 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| MobileNet-V1-YOLOv3 | sensitive -51.77% | COCO | 8 | 26.0 (-3.3) | 25.1 (-4.2) | 22.6 (-4.4) | 32 | 19.94 |
[
model
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_prune.tar
)
|
| R50-dcn-YOLOv3 | - | COCO | 8 | 39.1 | - | - | 177 | 89.60 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn.tar
)
|
| R50-dcn-YOLOv3 | sensitive -9.37% | COCO | 8 | 39.3 (+0.2) | - | - | 150 | 81.20 |
[
model
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune.tar
)
|
| R50-dcn-YOLOv3 | sensitive -24.68% | COCO | 8 | 37.3 (-1.8) | - | - | 113 | 67.48 |
[
model
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune578.tar
)
|
| R50-dcn-YOLOv3 obj365_pretrain | - | COCO | 8 | 41.4 | - | - | 177 | 89.60 |
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar
)
|
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -9.37% | COCO | 8 | 40.5 (-0.9) | - | - | 150 | 81.20 |
[
model
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune.tar
)
|
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -24.68% | COCO | 8 | 37.8 (-3.3) | - | - | 113 | 67.48 |
[
model
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune578.tar
)
|
PaddleLite:
env: Qualcomm SnapDragon 845 + armv8
criterion: time cost in Thread1/Thread2/Thread4
PaddleLite version: v2.3
| Model | Method | Dataset | Image/GPU | Input 608 Box AP | Input 416 Box AP | Input 320 Box AP | Model Size(MB) | GFLOPs (608
*608) | PaddleLite cost(ms)(608*
608) | TensorRT speed(FPS)(608
*
608) | Download |
| :----------------------------: | :---------------: | :--------: | :-------: | :--------------: | :--------------: | :--------------: | :------------: | :--------------: | :--------------: | :--------------: | :----------------------------: |
| MobileNet-V1-YOLOv3 | Baseline | Pascal VOC | 8 | 76.2 | 76.7 | 75.3 | 94 | 40.49 | 1238
\7
96.943
\5
20.101 |60.40|
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar
)
|
| MobileNet-V1-YOLOv3 | sensitive -52.88% | Pascal VOC | 8 | 77.6 (+1.4) | 77.7 (1.0) | 75.5 (+0.2) | 31 | 19.08 | 602.497
\3
53.759
\2
22.427 |99.36|
[
model
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_voc_prune.tar
)
|
| MobileNet-V1-YOLOv3 | - | COCO | 8 | 29.3 | 29.3 | 27.0 | 95 | 41.35 |-|-|
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| MobileNet-V1-YOLOv3 | sensitive -51.77% | COCO | 8 | 26.0 (-3.3) | 25.1 (-4.2) | 22.6 (-4.4) | 32 | 19.94 |-|73.93|
[
model
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_prune.tar
)
|
| R50-dcn-YOLOv3 | - | COCO | 8 | 39.1 | - | - | 177 | 89.60 |-|27.68|
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn.tar
)
|
| R50-dcn-YOLOv3 | sensitive -9.37% | COCO | 8 | 39.3 (+0.2) | - | - | 150 | 81.20 |-|30.08|
[
model
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune.tar
)
|
| R50-dcn-YOLOv3 | sensitive -24.68% | COCO | 8 | 37.3 (-1.8) | - | - | 113 | 67.48 |-|34.32|
[
model
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune578.tar
)
|
| R50-dcn-YOLOv3 obj365_pretrain | - | COCO | 8 | 41.4 | - | - | 177 | 89.60 |-|-|
[
model
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar
)
|
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -9.37% | COCO | 8 | 40.5 (-0.9) | - | - | 150 | 81.20 |-|-|
[
model
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune.tar
)
|
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -24.68% | COCO | 8 | 37.8 (-3.3) | - | - | 113 | 67.48 |-|-|
[
model
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune578.tar
)
|
### 2.3 Distillation
...
...
@@ -227,8 +235,16 @@ Image segmentation model PaddleLite latency (ms), input size 769x769
### 3.2 Pruning
| Model | Method | mIoU | Model Size(MB) | GFLOPs | Download |
| :-------: | :---------------: | :-----------: | :--------------: | :----: | :----------------------------------------------------------: |
| fast-scnn | baseline | 69.64 | 11 | 14.41 |
[
model
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape.tar
)
|
| fast-scnn | uniform -17.07% | 69.58 (-0.06) | 8.5 | 11.95 |
[
model
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_uniform-17.tar
)
|
| fast-scnn | sensitive -47.60% | 66.68 (-2.96) | 5.7 | 7.55 |
[
model
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_sensitive-47.tar
)
|
PaddleLite:
env: Qualcomm SnapDragon 845 + armv8
criterion: time cost in Thread1/Thread2/Thread4
PaddleLite version: v2.3
| Model | Method | mIoU | Model Size(MB) | GFLOPs | PaddleLite cost(ms) | TensorRT speed(FPS) | Download |
| :-------: | :---------------: | :-----------: | :--------------: | :----: | :--------------: | :----: | :-------------------: |
| fast-scnn | baseline | 69.64 | 11 | 14.41 | 1226.36
\6
82.96
\4
15.664 |39.53|
[
model
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape.tar
)
|
| fast-scnn | uniform -17.07% | 69.58 (-0.06) | 8.5 | 11.95 | 1140.37
\6
56.612
\4
15.888 |42.01|
[
model
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_uniform-17.tar
)
|
| fast-scnn | sensitive -47.60% | 66.68 (-2.96) | 5.7 | 7.55 | 866.693
\4
94.467
\2
91.748 |51.48|
[
model
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_sensitive-47.tar
)
|
docs/zh_cn/model_zoo.md
浏览文件 @
1e4656fe
...
...
@@ -110,7 +110,6 @@ PaddleLite版本: v2.3
| Darts | - | 97.135% | 3.767 | - |
| Darts_SA(基于Darts搜索空间) | SANAS | 97.276%(+0.141%) | 3.344(-11.2%) | - |
Note: MobileNetV2_NAS 的token是:[4, 4, 5, 1, 1, 2, 1, 1, 0, 2, 6, 2, 0, 3, 4, 5, 0, 4, 5, 5, 1, 4, 8, 0, 0]. Darts_SA的token是:[5, 5, 0, 5, 5, 10, 7, 7, 5, 7, 7, 11, 10, 12, 10, 0, 5, 3, 10, 8].
## 2. 目标检测
...
...
@@ -150,20 +149,29 @@ Note: MobileNetV2_NAS 的token是:[4, 4, 5, 1, 1, 2, 1, 1, 0, 2, 6,
### 2.2 剪裁
数据集:Pasacl VOC & COCO 2017
| 模型 | 压缩方法 | 数据集 | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型体积(MB) | GFLOPs (608
*
608) | 下载 |
| :----------------------------: | :---------------: | :--------: | :-------: | :------------: | :------------: | :------------: | :----------: | :--------------: | :----------------------------------------------------------: |
| MobileNet-V1-YOLOv3 | Baseline | Pascal VOC | 8 | 76.2 | 76.7 | 75.3 | 94 | 40.49 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar
)
|
| MobileNet-V1-YOLOv3 | sensitive -52.88% | Pascal VOC | 8 | 77.6 (+1.4) | 77.7 (1.0) | 75.5 (+0.2) | 31 | 19.08 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_voc_prune.tar
)
|
| MobileNet-V1-YOLOv3 | - | COCO | 8 | 29.3 | 29.3 | 27.0 | 95 | 41.35 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| MobileNet-V1-YOLOv3 | sensitive -51.77% | COCO | 8 | 26.0 (-3.3) | 25.1 (-4.2) | 22.6 (-4.4) | 32 | 19.94 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_prune.tar
)
|
| R50-dcn-YOLOv3 | - | COCO | 8 | 39.1 | - | - | 177 | 89.60 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn.tar
)
|
| R50-dcn-YOLOv3 | sensitive -9.37% | COCO | 8 | 39.3 (+0.2) | - | - | 150 | 81.20 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune.tar
)
|
| R50-dcn-YOLOv3 | sensitive -24.68% | COCO | 8 | 37.3 (-1.8) | - | - | 113 | 67.48 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune578.tar
)
|
| R50-dcn-YOLOv3 obj365_pretrain | - | COCO | 8 | 41.4 | - | - | 177 | 89.60 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar
)
|
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -9.37% | COCO | 8 | 40.5 (-0.9) | - | - | 150 | 81.20 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune.tar
)
|
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -24.68% | COCO | 8 | 37.8 (-3.3) | - | - | 113 | 67.48 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune578.tar
)
|
PaddleLite推理耗时说明:
环境:Qualcomm SnapDragon 845 + armv8
速度指标:Thread1/Thread2/Thread4耗时
PaddleLite版本: v2.3
| 模型 | 压缩方法 | 数据集 | Image/GPU | 输入608 Box AP | 输入416 Box AP | 输入320 Box AP | 模型体积(MB) | GFLOPs (608
*608) | PaddleLite推理耗时(ms)(608*
608) | TensorRT推理速度(FPS)(608
*
608) | 下载 |
| :----------------------------: | :---------------: | :--------: | :-------: | :------------: | :------------: | :------------: | :----------: | :--------------: | :--------------: | :--------------: | :-----------------------------------: |
| MobileNet-V1-YOLOv3 | Baseline | Pascal VOC | 8 | 76.2 | 76.7 | 75.3 | 94 | 40.49 | 1238
\7
96.943
\5
20.101|60.04|
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar
)
|
| MobileNet-V1-YOLOv3 | sensitive -52.88% | Pascal VOC | 8 | 77.6 (+1.4) | 77.7 (1.0) | 75.5 (+0.2) | 31 | 19.08 | 602.497
\3
53.759
\2
22.427 |99.36|
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_voc_prune.tar
)
|
| MobileNet-V1-YOLOv3 | - | COCO | 8 | 29.3 | 29.3 | 27.0 | 95 | 41.35 |-|-|
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| MobileNet-V1-YOLOv3 | sensitive -51.77% | COCO | 8 | 26.0 (-3.3) | 25.1 (-4.2) | 22.6 (-4.4) | 32 | 19.94 |-|73.93|
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_prune.tar
)
|
| R50-dcn-YOLOv3 | - | COCO | 8 | 39.1 | - | - | 177 | 89.60 |-|27.68|
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn.tar
)
|
| R50-dcn-YOLOv3 | sensitive -9.37% | COCO | 8 | 39.3 (+0.2) | - | - | 150 | 81.20 |-|30.08|
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune.tar
)
|
| R50-dcn-YOLOv3 | sensitive -24.68% | COCO | 8 | 37.3 (-1.8) | - | - | 113 | 67.48 |-|34.32|
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune578.tar
)
|
| R50-dcn-YOLOv3 obj365_pretrain | - | COCO | 8 | 41.4 | - | - | 177 | 89.60 |-|-|
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar
)
|
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -9.37% | COCO | 8 | 40.5 (-0.9) | - | - | 150 | 81.20 |-|-|
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune.tar
)
|
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -24.68% | COCO | 8 | 37.8 (-3.3) | - | - | 113 | 67.48 |-|-|
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune578.tar
)
|
### 2.3 蒸馏
...
...
@@ -236,8 +244,16 @@ Note: 硬件延时时间是利用提供的硬件延时表得到的,硬件延
### 3.2 剪裁
| 模型 | 压缩方法 | mIoU | 模型体积(MB) | GFLOPs | 下载 |
| :-------: | :---------------: | :-----------: | :------------: | :----: | :----------------------------------------------------------: |
| fast-scnn | baseline | 69.64 | 11 | 14.41 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape.tar
)
|
| fast-scnn | uniform -17.07% | 69.58 (-0.06) | 8.5 | 11.95 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_uniform-17.tar
)
|
| fast-scnn | sensitive -47.60% | 66.68 (-2.96) | 5.7 | 7.55 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_sensitive-47.tar
)
|
PaddleLite推理耗时说明:
环境:Qualcomm SnapDragon 845 + armv8
速度指标:Thread1/Thread2/Thread4耗时
PaddleLite版本: v2.3
| 模型 | 压缩方法 | mIoU | 模型体积(MB) | GFLOPs | PaddleLite推理耗时 | TensorRT推理速度(FPS) | 下载 |
| :-------: | :---------------: | :-----------: | :------------: | :----: | :------------: | :----: | :--------------------------------------: |
| fast-scnn | baseline | 69.64 | 11 | 14.41 | 1226.36
\6
82.96
\4
15.664 |39.53|
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape.tar
)
|
| fast-scnn | uniform -17.07% | 69.58 (-0.06) | 8.5 | 11.95 | 1140.37
\6
56.612
\4
15.888 |42.01|
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_uniform-17.tar
)
|
| fast-scnn | sensitive -47.60% | 66.68 (-2.96) | 5.7 | 7.55 | 866.693
\4
94.467
\2
91.748 |51.48|
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_sensitive-47.tar
)
|
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录