@@ -51,6 +52,7 @@ add_arg('initial_ratio', float, 0.15, "The initial pruning ratio used
add_arg('pruning_strategy',str,'base',"Which training strategy to use in pruning, we only support base and gmp for now. Default: base")
add_arg('prune_params_type',str,None,"Which kind of params should be pruned, we only support None (all but norms) and conv1x1_only for now. Default: None")
add_arg('local_sparsity',bool,False,"Whether to prune all the parameter matrix at the same ratio or not. Default: False")
add_arg('ce_test',bool,False,"Whether to CE test. Default: False")
add_arg('data',str,"imagenet","Which data to use. 'mnist' or 'imagenet'. Default: imagenet")
add_arg('data',str,"imagenet","Which data to use. 'mnist', 'cifar10' or 'imagenet'. Default: imagenet")
add_arg('log_period',int,100,"Log period in batches. Default: 100")
add_arg('test_period',int,5,"Test period in epoches. Default: 5")
add_arg('model_path',str,"./models","The path to save model. Default: ./models")
...
...
@@ -50,6 +52,8 @@ add_arg('pruning_steps', int, 120, "How many times you want to increas
add_arg('initial_ratio',float,0.15,"The initial pruning ratio used at the start of pruning stage. Default: 0.15")
add_arg('prune_params_type',str,None,"Which kind of params should be pruned, we only support None (all but norms) and conv1x1_only for now. Default: None")
add_arg('local_sparsity',bool,False,"Whether to prune all the parameter matrix at the same ratio or not. Default: False")
add_arg('ce_test',bool,False,"Whether to CE test. Default: False")
add_arg('num_workers',int,32,"number of workers when loading dataset. Default: 32")