Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
131e5da6
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
1 年多 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
131e5da6
编写于
11月 06, 2019
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'quant_embedding' into 'develop'
add quant embedding See merge request
!4
上级
48d9f2f9
8891f0e9
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
261 addition
and
0 deletion
+261
-0
paddleslim/quant/__init__.py
paddleslim/quant/__init__.py
+2
-0
paddleslim/quant/quant_embedding.py
paddleslim/quant/quant_embedding.py
+259
-0
未找到文件。
paddleslim/quant/__init__.py
浏览文件 @
131e5da6
...
...
@@ -11,3 +11,5 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.quant_embedding
import
quant_embedding
paddleslim/quant/quant_embedding.py
0 → 100755
浏览文件 @
131e5da6
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
logging
import
copy
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.fluid.framework
import
IrGraph
from
paddle.fluid
import
core
#_logger = logging.basicConfig(level=logging.DEBUG)
__all__
=
[
'quant_embedding'
]
default_config
=
{
"quantize_type"
:
"abs_max"
,
"quantize_bits"
:
8
,
"dtype"
:
"int8"
}
support_quantize_types
=
[
'abs_max'
]
support_quantize_bits
=
[
8
]
support_dtype
=
[
'int8'
]
def
_merge_config
(
old_config
,
new_config
):
"""
merge default config and user defined config
Args:
old_config(dict): the copy of default_config
new_config(dict): the user defined config, 'params_name' must be set.
When 'threshold' is not set, quant embedding without clip .
"""
old_config
.
update
(
new_config
)
keys
=
old_config
.
keys
()
assert
'params_name'
in
keys
,
"params_name must be set"
quantize_type
=
old_config
[
'quantize_type'
]
assert
isinstance
(
quantize_type
,
str
),
"quantize_type must be
\
str"
assert
quantize_type
in
support_quantize_types
,
"
\
quantize_type {} is not supported, now supported quantize type
\
are {}."
.
format
(
quantize_type
,
support_quantize_types
)
quantize_bits
=
old_config
[
'quantize_bits'
]
assert
isinstance
(
quantize_bits
,
int
),
"quantize_bits must be int"
assert
quantize_bits
in
support_quantize_bits
,
" quantize_bits {}
\
is not supported, now supported quantize bits are
\
{}. "
.
format
(
quantize_bits
,
support_quantize_bits
)
dtype
=
old_config
[
'dtype'
]
assert
isinstance
(
dtype
,
str
),
"dtype must be str"
assert
dtype
in
support_dtype
,
" dtype {} is not
\
supported, now supported dtypes are {}
\
"
.
format
(
dtype
,
support_dtype
)
if
'threshold'
in
keys
:
assert
isinstance
(
old_config
[
'threshold'
],
(
float
,
int
)),
"threshold
\
must be number."
print
(
"quant_embedding config {}"
.
format
(
old_config
))
return
old_config
def
_get_var_tensor
(
scope
,
var_name
):
"""
get tensor array by name.
Args:
scope(fluid.Scope): scope to get var
var_name(str): vatiable name
Return:
np.array
"""
return
np
.
array
(
scope
.
find_var
(
var_name
).
get_tensor
())
def
_clip_tensor
(
tensor_array
,
threshold
):
"""
when 'threshold' is set, clip tensor by 'threshold' and '-threshold'
Args:
tensor_array(np.array): array to clip
config(dict): config dict
"""
tensor_array
[
tensor_array
>
threshold
]
=
threshold
tensor_array
[
tensor_array
<
-
threshold
]
=
-
threshold
return
tensor_array
def
_get_scale_var_name
(
var_name
):
"""
get scale var name
"""
return
var_name
+
'.scale'
def
_get_quant_var_name
(
var_name
):
"""
get quantized var name
"""
return
var_name
+
'.int8'
def
_get_dequant_var_name
(
var_name
):
"""
get dequantized var name
"""
return
var_name
+
'.dequantize'
def
_restore_var
(
name
,
arr
,
scope
,
place
):
"""
restore quantized array to quantized var
"""
tensor
=
scope
.
find_var
(
name
).
get_tensor
()
tensor
.
set
(
arr
,
place
)
def
_clear_var
(
var_name
,
scope
):
"""
free memory of var
"""
tensor
=
scope
.
find_var
(
var_name
).
get_tensor
()
tensor
.
_clear
()
def
_quant_embedding_abs_max
(
graph
,
scope
,
place
,
config
):
"""
quantize embedding using abs_max
Args:
graph(IrGraph): graph that includes lookup_table op
scope(fluid.Scope): scope
place(fluid.CPUPlace or flud.CUDAPlace): place
config(dict): config to quant
"""
def
_quant_abs_max
(
tensor_array
,
config
):
"""
quant array using abs_max op
"""
bit_length
=
config
[
'quantize_bits'
]
scale
=
np
.
max
(
np
.
abs
(
tensor_array
)).
astype
(
"float32"
)
quanted_tensor
=
np
.
round
(
tensor_array
/
scale
*
(
(
1
<<
(
bit_length
-
1
))
-
1
))
return
scale
,
quanted_tensor
.
astype
(
config
[
'dtype'
])
def
_insert_dequant_abs_max_op
(
graph
,
scope
,
var_node
,
scale_node
,
config
):
"""
Insert dequantize_abs_max op in graph
"""
assert
var_node
.
is_var
(),
"{} is not a var"
.
format
(
var_node
.
name
())
dequant_var_node
=
graph
.
create_var_node
(
name
=
_get_dequant_var_name
(
var_node
.
name
()),
var_type
=
var_node
.
type
(),
shape
=
var_node
.
shape
(),
var_dtype
=
core
.
VarDesc
.
VarType
.
FP32
)
scope
.
var
(
dequant_var_node
.
name
())
max_range
=
(
1
<<
(
config
[
'quantize_bits'
]
-
1
))
-
1
output_ops
=
var_node
.
outputs
dequant_op
=
graph
.
create_op_node
(
op_type
=
'dequantize_abs_max'
,
attrs
=
{
'max_range'
:
float
(
max_range
),
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
},
inputs
=
{
'X'
:
var_node
,
'Scale'
:
scale_node
},
outputs
=
{
'Out'
:
dequant_var_node
})
graph
.
link_to
(
var_node
,
dequant_op
)
graph
.
link_to
(
scale_node
,
dequant_op
)
graph
.
link_to
(
dequant_op
,
dequant_var_node
)
for
node
in
output_ops
:
graph
.
update_input_link
(
var_node
,
dequant_var_node
,
node
)
all_var_nodes
=
graph
.
all_var_nodes
()
var_name
=
config
[
'params_name'
]
# find embedding var node by 'params_name'
embedding_node
=
graph
.
_find_node_by_name
(
all_var_nodes
,
var_name
)
embedding_tensor
=
_get_var_tensor
(
scope
,
var_name
)
if
'threshold'
in
config
.
keys
():
embedding_tensor
=
_clip_tensor
(
embedding_tensor
,
config
[
'threshold'
])
# get scale and quanted tensor
scale
,
quanted_tensor
=
_quant_abs_max
(
embedding_tensor
,
config
)
#create params must to use create_persistable_node
scale_var
=
graph
.
create_persistable_node
(
_get_scale_var_name
(
var_name
),
var_type
=
embedding_node
.
type
(),
shape
=
[
1
],
var_dtype
=
core
.
VarDesc
.
VarType
.
FP32
)
quant_tensor_var
=
graph
.
create_persistable_node
(
_get_quant_var_name
(
var_name
),
var_type
=
embedding_node
.
type
(),
shape
=
embedding_node
.
shape
(),
var_dtype
=
core
.
VarDesc
.
VarType
.
INT8
)
# create var in scope
scope
.
var
(
_get_quant_var_name
(
var_name
))
scope
.
var
(
_get_scale_var_name
(
var_name
))
#set var by tensor array or scale
_restore_var
(
_get_quant_var_name
(
var_name
),
quanted_tensor
,
scope
,
place
)
_restore_var
(
_get_scale_var_name
(
var_name
),
np
.
array
(
scale
),
scope
,
place
)
# insert dequantize_abs_max op
for
op_node
in
embedding_node
.
outputs
:
if
op_node
.
name
()
==
'lookup_table'
:
graph
.
update_input_link
(
embedding_node
,
quant_tensor_var
,
op_node
)
var_node
=
op_node
.
outputs
[
0
]
_insert_dequant_abs_max_op
(
graph
,
scope
,
var_node
,
scale_var
,
config
)
# free float embedding params memory
_clear_var
(
embedding_node
.
name
(),
scope
)
graph
.
safe_remove_nodes
(
embedding_node
)
def
quant_embedding
(
program
,
place
,
config
,
scope
=
None
):
"""
quant lookup_table op parameters
Args:
program(fluid.Program): infer program
scope(fluid.Scope): the scope to store var, when is None will use fluid.global_scope()
place(fluid.CPUPlace or fluid.CUDAPlace): place
config(dict): config to quant. The keys are 'params_name', 'quantize_type',
\
'quantize_bits', 'dtype', 'threshold'.
\
'params_name': parameter name to quant, must be set.
'quantize_type': quantize type, supported types are ['abs_max']. default is "abs_max".
'quantize_bits': quantize bits, supported bits are [8]. default is 8.
'dtype': quantize dtype, supported dtype are ['int8']. default is 'int8'.
'threshold': threshold to clip tensor before quant. When threshold is not set,
\
tensor will not be clipped.
"""
assert
isinstance
(
config
,
dict
),
"config must be dict"
config
=
_merge_config
(
copy
.
deepcopy
(
default_config
),
config
)
scope
=
fluid
.
global_scope
()
if
scope
is
None
else
scope
graph
=
IrGraph
(
core
.
Graph
(
program
.
desc
),
for_test
=
True
)
if
config
[
'quantize_type'
]
==
'abs_max'
:
_quant_embedding_abs_max
(
graph
,
scope
,
place
,
config
)
return
graph
.
to_program
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录