提交 10afcebd 编写于 作者: S slf12

Merge branch 'develop' of ssh://gitlab.baidu.com:8022/PaddlePaddle/PaddleSlim into api_doc

......@@ -50,8 +50,9 @@ pip install paddleslim -i https://pypi.org/simple
## 使用
- [API文档]():API使用介绍,包括[蒸馏]()、[剪裁]()、[量化]()和[模型结构搜索]()。
- [示例]():基于mnist和cifar10等简单分类任务的模型压缩示例,您可以通过该部分快速体验和了解PaddleSlim的功能。
- [API文档](doc/api_guide.md):API使用介绍,包括[蒸馏]()、[剪裁]()、[量化]()和[模型结构搜索]()。
- [示例](doc/demo_guide.md):基于mnist和cifar10等简单分类任务的模型压缩示例,您可以通过该部分快速体验和了解PaddleSlim的功能。
- [实践教程]():经典模型的分析和压缩实验教程。
- [模型库]():经过压缩的分类、检测、语义分割模型,包括权重文件、网络结构文件和性能数据。
- [Paddle检测库]():介绍如何在检测库中使用PaddleSlim。
- [Paddle分割库]():介绍如何在分割库中使用PaddleSlim。
......
......@@ -13,8 +13,7 @@ import numpy as np
import paddle.fluid as fluid
sys.path.append(sys.path[0] + "/../")
import models
import imagenet_reader as reader
from utility import add_arguments, print_arguments
from utility import add_arguments, print_arguments, _download, _decompress
from paddleslim.dist import merge, l2_loss, soft_label_loss, fsp_loss
logging.basicConfig(format='%(asctime)s-%(levelname)s: %(message)s')
......@@ -33,12 +32,12 @@ add_arg('lr_strategy', str, "piecewise_decay", "The learning rate decay
add_arg('l2_decay', float, 3e-5, "The l2_decay parameter.")
add_arg('momentum_rate', float, 0.9, "The value of momentum_rate.")
add_arg('num_epochs', int, 120, "The number of total epochs.")
add_arg('data', str, "mnist", "Which data to use. 'mnist' or 'imagenet'")
add_arg('data', str, "cifar10", "Which data to use. 'cifar10' or 'imagenet'")
add_arg('log_period', int, 20, "Log period in batches.")
add_arg('model', str, "MobileNet", "Set the network to use.")
add_arg('pretrained_model', str, None, "Whether to use pretrained model.")
add_arg('teacher_model', str, "ResNet50", "Set the teacher network to use.")
add_arg('teacher_pretrained_model', str, "../pretrain/ResNet50_pretrained", "Whether to use pretrained model.")
add_arg('teacher_pretrained_model', str, "./ResNet50_pretrained", "Whether to use pretrained model.")
parser.add_argument('--step_epochs', nargs='+', type=int, default=[30, 60, 90], help="piecewise decay step")
# yapf: enable
......@@ -76,12 +75,12 @@ def create_optimizer(args):
def compress(args):
if args.data == "mnist":
import paddle.dataset.mnist as reader
train_reader = reader.train()
val_reader = reader.test()
if args.data == "cifar10":
import paddle.dataset.cifar as reader
train_reader = reader.train10()
val_reader = reader.test10()
class_dim = 10
image_shape = "1,28,28"
image_shape = "3,32,32"
elif args.data == "imagenet":
import imagenet_reader as reader
train_reader = reader.train()
......@@ -132,7 +131,7 @@ def compress(args):
val_reader, batch_size=args.batch_size, drop_last=True)
val_program = student_program.clone(for_test=True)
places = fluid.cuda_places()
places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()
train_loader.set_sample_list_generator(train_reader, places)
valid_loader.set_sample_list_generator(val_reader, place)
......@@ -146,11 +145,13 @@ def compress(args):
name='image', shape=image_shape, dtype='float32')
predict = teacher_model.net(image, class_dim=class_dim)
#print("="*50+"teacher_model_params"+"="*50)
#for v in teacher_program.list_vars():
# print(v.name, v.shape)
#print("="*50+"teacher_model_params"+"="*50)
#for v in teacher_program.list_vars():
# print(v.name, v.shape)
exe.run(t_startup)
_download('http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar', '.')
_decompress('./ResNet50_pretrained.tar')
assert args.teacher_pretrained_model and os.path.exists(
args.teacher_pretrained_model
), "teacher_pretrained_model should be set when teacher_model is not None."
......@@ -158,7 +159,7 @@ def compress(args):
def if_exist(var):
return os.path.exists(
os.path.join(args.teacher_pretrained_model, var.name)
) and var.name != 'conv1_weights' and var.name != 'fc_0.w_0' and var.name != 'fc_0.b_0'
) and var.name != 'fc_0.w_0' and var.name != 'fc_0.b_0'
fluid.io.load_vars(
exe,
......@@ -173,19 +174,9 @@ def compress(args):
data_name_map,
place)
#print("="*50+"teacher_vars"+"="*50)
#for v in teacher_program.list_vars():
# if '_generated_var' not in v.name and 'fetch' not in v.name and 'feed' not in v.name:
# print(v.name, v.shape)
#return
with fluid.program_guard(main, s_startup):
l2_loss_v = l2_loss("teacher_fc_0.tmp_0", "fc_0.tmp_0", main)
fsp_loss_v = fsp_loss("teacher_res2a_branch2a.conv2d.output.1.tmp_0",
"teacher_res3a_branch2a.conv2d.output.1.tmp_0",
"depthwise_conv2d_1.tmp_0", "conv2d_3.tmp_0",
main)
loss = avg_cost + l2_loss_v + fsp_loss_v
l2_loss = l2_loss("teacher_fc_0.tmp_0", "fc_0.tmp_0", main)
loss = avg_cost + l2_loss
opt = create_optimizer(args)
opt.minimize(loss)
exe.run(s_startup)
......@@ -196,17 +187,16 @@ def compress(args):
for epoch_id in range(args.num_epochs):
for step_id, data in enumerate(train_loader):
loss_1, loss_2, loss_3, loss_4 = exe.run(
loss_1, loss_2, loss_3 = exe.run(
parallel_main,
feed=data,
fetch_list=[
loss.name, avg_cost.name, l2_loss_v.name, fsp_loss_v.name
loss.name, avg_cost.name, l2_loss.name
])
if step_id % args.log_period == 0:
_logger.info(
"train_epoch {} step {} loss {:.6f}, class loss {:.6f}, l2 loss {:.6f}, fsp loss {:.6f}".
format(epoch_id, step_id, loss_1[0], loss_2[0], loss_3[0],
loss_4[0]))
"train_epoch {} step {} loss {:.6f}, class loss {:.6f}, l2 loss {:.6f}".
format(epoch_id, step_id, loss_1[0], loss_2[0], loss_3[0]))
val_acc1s = []
val_acc5s = []
for step_id, data in enumerate(valid_loader):
......
......@@ -20,6 +20,12 @@ import distutils.util
import os
import numpy as np
import six
import requests
import shutil
import tqdm
import hashlib
import tarfile
import zipfile
import logging
import paddle.fluid as fluid
import paddle.compat as cpt
......@@ -30,6 +36,7 @@ logging.basicConfig(format='%(asctime)s-%(levelname)s: %(message)s')
_logger = logging.getLogger(__name__)
_logger.setLevel(logging.INFO)
DOWNLOAD_RETRY_LIMIT=3
def print_arguments(args):
"""Print argparse's arguments.
......@@ -154,3 +161,122 @@ def load_persistable_nodes(executor, dirname, graph):
else:
_logger.info("Cannot find the var %s!!!" % (node.name()))
fluid.io.load_vars(executor=executor, dirname=dirname, vars=var_list)
def _download(url, path, md5sum=None):
"""
Download from url, save to path.
url (str): download url
path (str): download to given path
"""
if not os.path.exists(path):
os.makedirs(path)
fname = os.path.split(url)[-1]
fullname = os.path.join(path, fname)
retry_cnt = 0
while not (os.path.exists(fullname) and _md5check(fullname, md5sum)):
if retry_cnt < DOWNLOAD_RETRY_LIMIT:
retry_cnt += 1
else:
raise RuntimeError("Download from {} failed. "
"Retry limit reached".format(url))
_logger.info("Downloading {} from {}".format(fname, url))
req = requests.get(url, stream=True)
if req.status_code != 200:
raise RuntimeError("Downloading from {} failed with code "
"{}!".format(url, req.status_code))
# For protecting download interupted, download to
# tmp_fullname firstly, move tmp_fullname to fullname
# after download finished
tmp_fullname = fullname + "_tmp"
total_size = req.headers.get('content-length')
with open(tmp_fullname, 'wb') as f:
if total_size:
for chunk in tqdm.tqdm(
req.iter_content(chunk_size=1024),
total=(int(total_size) + 1023) // 1024,
unit='KB'):
f.write(chunk)
else:
for chunk in req.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
shutil.move(tmp_fullname, fullname)
return fullname
def _md5check(fullname, md5sum=None):
if md5sum is None:
return True
_logger.info("File {} md5 checking...".format(fullname))
md5 = hashlib.md5()
with open(fullname, 'rb') as f:
for chunk in iter(lambda: f.read(4096), b""):
md5.update(chunk)
calc_md5sum = md5.hexdigest()
if calc_md5sum != md5sum:
_logger.info("File {} md5 check failed, {}(calc) != "
"{}(base)".format(fullname, calc_md5sum, md5sum))
return False
return True
def _decompress(fname):
"""
Decompress for zip and tar file
"""
_logger.info("Decompressing {}...".format(fname))
# For protecting decompressing interupted,
# decompress to fpath_tmp directory firstly, if decompress
# successed, move decompress files to fpath and delete
# fpath_tmp and remove download compress file.
fpath = os.path.split(fname)[0]
fpath_tmp = os.path.join(fpath, 'tmp')
if os.path.isdir(fpath_tmp):
shutil.rmtree(fpath_tmp)
os.makedirs(fpath_tmp)
if fname.find('tar') >= 0:
with tarfile.open(fname) as tf:
tf.extractall(path=fpath_tmp)
elif fname.find('zip') >= 0:
with zipfile.ZipFile(fname) as zf:
zf.extractall(path=fpath_tmp)
else:
raise TypeError("Unsupport compress file type {}".format(fname))
for f in os.listdir(fpath_tmp):
src_dir = os.path.join(fpath_tmp, f)
dst_dir = os.path.join(fpath, f)
_move_and_merge_tree(src_dir, dst_dir)
shutil.rmtree(fpath_tmp)
os.remove(fname)
def _move_and_merge_tree(src, dst):
"""
Move src directory to dst, if dst is already exists,
merge src to dst
"""
if not os.path.exists(dst):
shutil.move(src, dst)
else:
for fp in os.listdir(src):
src_fp = os.path.join(src, fp)
dst_fp = os.path.join(dst, fp)
if os.path.isdir(src_fp):
if os.path.isdir(dst_fp):
_move_and_merge_tree(src_fp, dst_fp)
else:
shutil.move(src_fp, dst_fp)
elif os.path.isfile(src_fp) and \
not os.path.isfile(dst_fp):
shutil.move(src_fp, dst_fp)
## [蒸馏]()
### [单进程蒸馏](../paddleslim/dist/single_distiller_api_doc.md)
### [通道剪裁](../paddleslim/prune/prune_api.md)
### [量化](../paddleslim/prune/prune_api.md)
#### [量化训练]()
#### [离线量化]()
#### [embedding量化]()
## [小模型结构搜索]()
## [蒸馏](../demo/distillation/distillation_demo.py)
蒸馏demo默认使用ResNet50作为teacher网络,MobileNet作为student网络,此外还支持将teacher和student换成[models目录](../demo/models)支持的任意模型。
demo中对teahcer模型和student模型的一层特征图添加了l2_loss的蒸馏损失函数,使用时也可根据需要选择fsp_loss, soft_label_loss以及自定义的loss函数。
训练默认使用的是cifar10数据集,piecewise_decay学习率衰减策略,momentum优化器进行120轮蒸馏训练。使用者也可以简单地用args参数切换为使用ImageNet数据集,cosine_decay学习率衰减策略等其他训练配置。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册