Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
08cba09a
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 2 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
08cba09a
编写于
11月 14, 2019
作者:
C
ceci3
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update resnet
上级
b8c5848d
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
69 addition
and
35 deletion
+69
-35
paddleslim/nas/search_space/resnet.py
paddleslim/nas/search_space/resnet.py
+69
-35
未找到文件。
paddleslim/nas/search_space/resnet.py
浏览文件 @
08cba09a
...
@@ -28,31 +28,36 @@ __all__ = ["ResNetSpace"]
...
@@ -28,31 +28,36 @@ __all__ = ["ResNetSpace"]
@
SEARCHSPACE
.
register
@
SEARCHSPACE
.
register
class
ResNetSpace
(
SearchSpaceBase
):
class
ResNetSpace
(
SearchSpaceBase
):
def
__init__
(
self
,
input_size
,
output_size
,
block_num
,
extract_feature
=
False
,
class_dim
=
1000
):
def
__init__
(
self
,
input_size
,
output_size
,
block_num
,
extract_feature
=
False
,
class_dim
=
1000
):
super
(
ResNetSpace
,
self
).
__init__
(
input_size
,
output_size
,
block_num
)
super
(
ResNetSpace
,
self
).
__init__
(
input_size
,
output_size
,
block_num
)
self
.
filter_num1
=
np
.
array
([
48
,
64
,
96
,
128
,
160
,
192
,
224
])
#7
self
.
filter_num1
=
np
.
array
([
48
,
64
,
96
,
128
,
160
,
192
,
224
])
#7
self
.
filter_num2
=
np
.
array
([
64
,
96
,
128
,
160
,
192
,
256
,
320
])
#7
self
.
filter_num2
=
np
.
array
([
64
,
96
,
128
,
160
,
192
,
256
,
320
])
#7
self
.
filter_num3
=
np
.
array
([
128
,
160
,
192
,
256
,
320
,
384
])
#6
self
.
filter_num3
=
np
.
array
([
128
,
160
,
192
,
256
,
320
,
384
])
#6
self
.
filter_num4
=
np
.
array
([
192
,
256
,
384
,
512
,
640
])
#5
self
.
filter_num4
=
np
.
array
([
192
,
256
,
384
,
512
,
640
])
#5
self
.
repeat1
=
[
2
,
3
,
4
,
5
,
6
]
#5
self
.
repeat1
=
[
2
,
3
,
4
,
5
,
6
]
#5
self
.
repeat2
=
[
2
,
3
,
4
,
5
,
6
,
7
]
#6
self
.
repeat2
=
[
2
,
3
,
4
,
5
,
6
,
7
]
#6
self
.
repeat3
=
[
2
,
3
,
4
,
5
,
6
,
7
,
8
,
10
,
12
,
14
,
16
,
20
,
24
]
#13
self
.
repeat3
=
[
2
,
3
,
4
,
5
,
6
,
7
,
8
,
10
,
12
,
14
,
16
,
20
,
24
]
#13
self
.
repeat4
=
[
2
,
3
,
4
,
5
,
6
,
7
]
#6
self
.
repeat4
=
[
2
,
3
,
4
,
5
,
6
,
7
]
#6
self
.
class_dim
=
class_dim
self
.
class_dim
=
class_dim
self
.
extract_feature
=
extract_feature
self
.
extract_feature
=
extract_feature
def
init_tokens
(
self
):
def
init_tokens
(
self
):
init_token_base
=
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
]
init_token_base
=
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
]
self
.
token_len
=
self
.
block_num
*
2
self
.
token_len
=
self
.
block_num
*
2
return
init_token_base
[:
self
.
token_len
]
return
init_token_base
[:
self
.
token_len
]
def
range_table
(
self
):
def
range_table
(
self
):
range_table_base
=
[
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
]
range_table_base
=
[
3
,
3
,
3
,
3
,
3
,
3
,
3
,
3
]
return
range_table_base
[:
self
.
token_len
]
return
range_table_base
[:
self
.
token_len
]
def
token2arch
(
self
,
tokens
=
None
):
def
token2arch
(
self
,
tokens
=
None
):
assert
self
.
block_num
<
5
,
'block number must less than 5, but receive block number is {}'
.
format
(
self
.
block_num
)
assert
self
.
block_num
<
5
,
'block number must less than 5, but receive block number is {}'
.
format
(
self
.
block_num
)
if
tokens
is
None
:
if
tokens
is
None
:
tokens
=
self
.
init_tokens
()
tokens
=
self
.
init_tokens
()
...
@@ -60,56 +65,85 @@ class ResNetSpace(SearchSpaceBase):
...
@@ -60,56 +65,85 @@ class ResNetSpace(SearchSpaceBase):
def
net_arch
(
input
):
def
net_arch
(
input
):
depth
=
[]
depth
=
[]
num_filters
=
[]
num_filters
=
[]
if
self
.
block_num
<
=
1
:
if
self
.
block_num
>
=
1
:
filter1
=
self
.
filter_num1
[
tokens
[
0
]]
filter1
=
self
.
filter_num1
[
tokens
[
0
]]
repeat1
=
self
.
repeat1
[
tokens
[
1
]]
repeat1
=
self
.
repeat1
[
tokens
[
1
]]
depth
.
append
(
filter1
)
depth
.
append
(
filter1
)
num_filters
.
append
(
repeat1
)
num_filters
.
append
(
repeat1
)
if
self
.
block_num
<
=
2
:
if
self
.
block_num
>
=
2
:
filter2
=
self
.
filter_num2
[
tokens
[
2
]]
filter2
=
self
.
filter_num2
[
tokens
[
2
]]
repeat2
=
self
.
repeat2
[
tokens
[
3
]]
repeat2
=
self
.
repeat2
[
tokens
[
3
]]
depth
.
append
(
filter2
)
depth
.
append
(
filter2
)
num_filters
.
append
(
repeat2
)
num_filters
.
append
(
repeat2
)
if
self
.
block_num
<
=
3
:
if
self
.
block_num
>
=
3
:
filter3
=
self
.
filter_num3
[
tokens
[
4
]]
filter3
=
self
.
filter_num3
[
tokens
[
4
]]
repeat3
=
self
.
repeat3
[
tokens
[
5
]]
repeat3
=
self
.
repeat3
[
tokens
[
5
]]
depth
.
append
(
filter3
)
depth
.
append
(
filter3
)
num_filters
.
append
(
repeat3
)
num_filters
.
append
(
repeat3
)
if
self
.
block_num
<
=
4
:
if
self
.
block_num
>
=
4
:
filter4
=
self
.
filter_num4
[
tokens
[
6
]]
filter4
=
self
.
filter_num4
[
tokens
[
6
]]
repeat4
=
self
.
repeat4
[
tokens
[
7
]]
repeat4
=
self
.
repeat4
[
tokens
[
7
]]
depth
.
append
(
filter4
)
depth
.
append
(
filter4
)
num_filters
.
append
(
repeat4
)
num_filters
.
append
(
repeat4
)
conv
=
conv_bn_layer
(
input
=
input
,
filter_size
=
5
,
num_filters
=
filter1
,
stride
=
2
,
act
=
'relu'
)
conv
=
conv_bn_layer
(
input
=
input
,
filter_size
=
5
,
num_filters
=
filter1
,
stride
=
2
,
act
=
'relu'
,
name
=
'resnet_conv0'
)
for
block
in
range
(
len
(
depth
)):
for
block
in
range
(
len
(
depth
)):
for
i
in
range
(
depth
[
block
]):
for
i
in
range
(
depth
[
block
]):
conv
=
self
.
_basicneck_block
(
input
=
conv
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
)
conv
=
self
.
_basicneck_block
(
input
=
conv
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
name
=
'resnet_depth{}_block{}'
.
format
(
i
,
block
))
if
self
.
output_size
==
1
:
if
self
.
output_size
==
1
:
conv
=
fluid
.
layers
.
fc
(
conv
=
fluid
.
layers
.
fc
(
input
=
conv
,
input
=
conv
,
size
=
self
.
class_dim
,
size
=
self
.
class_dim
,
act
=
None
,
act
=
None
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
0.0
,
0.01
)),
initializer
=
fluid
.
initializer
.
NormalInitializer
(
0.0
,
bias_attr
=
fluid
.
param_attr
.
ParamAttr
(
0.01
)),
initializer
=
fluid
.
initializer
.
ConstantInitializer
()))
bias_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
ConstantInitializer
(
0
)))
return
conv
return
conv
return
net_arch
return
net_arch
def
_shortcut
(
self
,
input
,
ch_out
,
stride
):
def
_shortcut
(
self
,
input
,
ch_out
,
stride
,
name
=
None
):
ch_in
=
input
.
shape
[
1
]
ch_in
=
input
.
shape
[
1
]
if
ch_in
!=
ch_out
or
stride
!=
1
:
if
ch_in
!=
ch_out
or
stride
!=
1
:
return
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
ch_out
,
stride
=
stride
)
return
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
ch_out
,
stride
=
stride
,
name
=
name
+
'_conv'
)
else
:
else
:
return
input
return
input
def
_basicneck_block
(
self
,
input
,
num_filters
,
stride
):
def
_basicneck_block
(
self
,
input
,
num_filters
,
stride
,
name
=
None
):
conv0
=
conv_bn_layer
(
input
=
input
,
filter_size
=
3
,
num_filters
=
num_filters
,
stride
=
stride
,
act
=
'relu'
)
conv0
=
conv_bn_layer
(
conv1
=
conv_bn_layer
(
input
=
conv0
,
filter_size
=
3
,
num_filters
=
num_filters
,
stride
=
1
,
act
=
None
)
input
=
input
,
short
=
self
.
_shortcut
(
input
,
num_filters
,
stride
)
filter_size
=
3
,
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv1
,
act
=
'relu'
)
num_filters
=
num_filters
,
stride
=
stride
,
act
=
'relu'
,
name
=
name
+
'_basicneck_conv0'
)
conv1
=
conv_bn_layer
(
input
=
conv0
,
filter_size
=
3
,
num_filters
=
num_filters
,
stride
=
1
,
act
=
None
,
name
=
name
+
'_basicneck_conv1'
)
short
=
self
.
_shortcut
(
input
,
num_filters
,
stride
,
name
=
name
+
'_short'
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv1
,
act
=
'relu'
,
name
=
name
+
'_basicneck_add'
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录