未验证 提交 043d3bf4 编写于 作者: C ceci3 提交者: GitHub

Fix nas api unittest (#90)

上级 feff2cde
......@@ -56,7 +56,7 @@ class ControllerClient(object):
socket_client.send("{}\t{}\t{}\t{}\t{}".format(
self._key, tokens, reward, iter, self._client_name).encode())
response = socket_client.recv(1024).decode()
if response.strip('\n').split("\t") == "ok":
if "ok" in response.strip('\n').split("\t"):
return True
else:
return False
......
......@@ -66,6 +66,7 @@ class ControllerServer(object):
_logger.info("ControllerServer - listen on: [{}:{}]".format(
self._ip, self._port))
thread = Thread(target=self.run)
thread.setDaemon(True)
thread.start()
return str(thread)
......
......@@ -115,7 +115,6 @@ class SAController(EvolutionaryController):
self._searched[str(tokens)] = reward
temperature = self._init_temperature * self._reduce_rate**(client_num *
self._iter)
self._current_tokens = tokens
if (reward > self._reward) or (np.random.random() <= math.exp(
(reward - self._reward) / temperature)):
self._reward = reward
......@@ -164,8 +163,7 @@ class SAController(EvolutionaryController):
)
sys.exit()
if self._constrain_func is None or self._max_try_times is None:
return new_tokens
self._current_tokens = new_tokens
return new_tokens
......
......@@ -20,7 +20,6 @@ import json
import hashlib
import time
import paddle.fluid as fluid
from ..core import VarWrapper, OpWrapper, GraphWrapper
from ..common import SAController
from ..common import get_logger
from ..analysis import flops
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append('..')
import unittest
import paddle.fluid as fluid
from nas.search_space_factory import SearchSpaceFactory
class TestSearchSpace(unittest.TestCase):
def test_searchspace(self):
# if output_size is 1, the model will add fc layer in the end.
config = {'input_size': 224, 'output_size': 7, 'block_num': 5}
space = SearchSpaceFactory()
my_space = space.get_search_space([('MobileNetV2Space', config)])
model_arch = my_space.token2arch()
train_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(train_prog, startup_prog):
input_size = config['input_size']
model_input = fluid.layers.data(
name='model_in',
shape=[1, 3, input_size, input_size],
dtype='float32',
append_batch_size=False)
predict = model_arch[0](model_input)
self.assertTrue(predict.shape[2] == config['output_size'])
class TestMultiSearchSpace(unittest.TestCase):
space = SearchSpaceFactory()
config0 = {'input_size': 224, 'output_size': 7, 'block_num': 5}
config1 = {'input_size': 7, 'output_size': 1, 'block_num': 2}
my_space = space.get_search_space(
[('MobileNetV2Space', config0), ('ResNetSpace', config1)])
model_archs = my_space.token2arch()
train_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(train_prog, startup_prog):
input_size = config0['input_size']
model_input = fluid.layers.data(
name='model_in',
shape=[1, 3, input_size, input_size],
dtype='float32',
append_batch_size=False)
for model_arch in model_archs:
predict = model_arch(model_input)
model_input = predict
print(predict)
if __name__ == '__main__':
unittest.main()
......@@ -11,52 +11,90 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
sys.path.append("../")
import unittest
import paddle.fluid as fluid
from paddleslim.nas import SANAS
from paddleslim.nas import SearchSpaceFactory
from paddleslim.analysis import flops
import numpy as np
def compute_op_num(program):
params = {}
ch_list = []
for block in program.blocks:
for param in block.all_parameters():
if len(param.shape) == 4:
params[param.name] = param.shape
ch_list.append(int(param.shape[0]))
return params, ch_list
class TestSANAS(unittest.TestCase):
def test_nas(self):
factory = SearchSpaceFactory()
config0 = {'input_size': 224, 'output_size': 7, 'block_num': 5}
config1 = {'input_size': 7, 'output_size': 1, 'block_num': 2}
configs = [('MobileNetV2Space', config0), ('ResNetSpace', config1)]
space = factory.get_search_space([('MobileNetV2Space', config0)])
origin_arch = space.token2arch()[0]
main_program = fluid.Program()
s_program = fluid.Program()
with fluid.program_guard(main_program, s_program):
input = fluid.data(
name="input", shape=[None, 3, 224, 224], dtype="float32")
origin_arch(input)
base_flops = flops(main_program)
search_steps = 3
sa_nas = SANAS(
configs,
search_steps=search_steps,
server_addr=("", 0),
is_server=True)
for i in range(search_steps):
archs = sa_nas.next_archs()
main_program = fluid.Program()
s_program = fluid.Program()
with fluid.program_guard(main_program, s_program):
input = fluid.data(
name="input", shape=[None, 3, 224, 224], dtype="float32")
archs[0](input)
sa_nas.reward(1)
self.assertTrue(flops(main_program) < base_flops)
def setUp(self):
self.init_test_case()
port = np.random.randint(8337, 8773)
self.sanas = SANAS(configs=self.configs, server_addr=("", port), save_checkpoint=None)
def init_test_case(self):
self.configs=[('MobileNetV2BlockSpace', {'block_mask':[0]})]
self.filter_num = np.array([
3, 4, 8, 12, 16, 24, 32, 48, 64, 80, 96, 128, 144, 160, 192, 224,
256, 320, 384, 512
])
self.k_size = np.array([3, 5])
self.multiply = np.array([1, 2, 3, 4, 5, 6])
self.repeat = np.array([1, 2, 3, 4, 5, 6])
def check_chnum_convnum(self, program):
current_tokens = self.sanas.current_info()['current_tokens']
channel_exp = self.multiply[current_tokens[0]]
filter_num = self.filter_num[current_tokens[1]]
repeat_num = self.repeat[current_tokens[2]]
conv_list, ch_pro = compute_op_num(program)
### assert conv number
self.assertTrue((repeat_num * 3) == len(conv_list), "the number of conv is NOT match, the number compute from token: {}, actual conv number: {}".format(repeat_num * 3, len(conv_list)))
### assert number of channels
ch_token = []
init_ch_num = 32
for i in range(repeat_num):
ch_token.append(init_ch_num * channel_exp)
ch_token.append(init_ch_num * channel_exp)
ch_token.append(filter_num)
init_ch_num = filter_num
self.assertTrue(str(ch_token) == str(ch_pro), "channel num is WRONG, channel num from token is {}, channel num come fom program is {}".format(str(ch_token), str(ch_pro)))
def test_all_function(self):
### unittest for next_archs
next_program = fluid.Program()
startup_program = fluid.Program()
token2arch_program = fluid.Program()
with fluid.program_guard(next_program, startup_program):
inputs = fluid.data(name='input', shape=[None, 3, 32, 32], dtype='float32')
archs = self.sanas.next_archs()
for arch in archs:
output = arch(inputs)
inputs = output
self.check_chnum_convnum(next_program)
### unittest for reward
self.assertTrue(self.sanas.reward(float(1.0)), "reward is False")
### uniitest for tokens2arch
with fluid.program_guard(token2arch_program, startup_program):
inputs = fluid.data(name='input', shape=[None, 3, 32, 32], dtype='float32')
arch = self.sanas.tokens2arch(self.sanas.current_info()['current_tokens'])
for arch in archs:
output = arch(inputs)
inputs = output
self.check_chnum_convnum(token2arch_program)
### unittest for current_info
current_info = self.sanas.current_info()
self.assertTrue(isinstance(current_info, dict), "the type of current info must be dict, but now is {}".format(type(current_info)))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册