1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import logging
import paddle
import argparse
import functools
import math
import time
import numpy as np
from paddle.distributed import ParallelEnv
from paddle.static import load_program_state
from paddle.vision.models import mobilenet_v1
import paddle.vision.transforms as T
from paddleslim.common import get_logger
from paddleslim.dygraph.quant import QAT
sys.path.append(os.path.join(os.path.dirname("__file__")))
from mobilenet_v3 import MobileNetV3_large_x1_0
from optimizer import create_optimizer
sys.path.append(
os.path.join(os.path.dirname("__file__"), os.path.pardir, os.path.pardir))
from utility import add_arguments, print_arguments
_logger = get_logger(__name__, level=logging.INFO)
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size', int, 256, "Single Card Minibatch size.")
add_arg('use_gpu', bool, True, "Whether to use GPU or not.")
add_arg('model', str, "mobilenet_v3", "The target model.")
add_arg('pretrained_model', str, "MobileNetV3_large_x1_0_ssld_pretrained", "Whether to use pretrained model.")
add_arg('lr', float, 0.0001, "The learning rate used to fine-tune pruned model.")
add_arg('lr_strategy', str, "piecewise_decay", "The learning rate decay strategy.")
add_arg('l2_decay', float, 3e-5, "The l2_decay parameter.")
add_arg('ls_epsilon', float, 0.0, "Label smooth epsilon.")
add_arg('use_pact', bool, False, "Whether to use PACT method.")
add_arg('momentum_rate', float, 0.9, "The value of momentum_rate.")
add_arg('num_epochs', int, 1, "The number of total epochs.")
add_arg('total_images', int, 1281167, "The number of total training images.")
add_arg('data', str, "imagenet", "Which data to use. 'cifar10' or 'imagenet'")
add_arg('log_period', int, 10, "Log period in batches.")
add_arg('model_save_dir', str, "./output_models", "model save directory.")
parser.add_argument('--step_epochs', nargs='+', type=int, default=[10, 20, 30], help="piecewise decay step")
# yapf: enable
def load_dygraph_pretrain(model, path=None, load_static_weights=False):
if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
raise ValueError("Model pretrain path {} does not "
"exists.".format(path))
if load_static_weights:
pre_state_dict = load_program_state(path)
param_state_dict = {}
model_dict = model.state_dict()
for key in model_dict.keys():
weight_name = model_dict[key].name
if weight_name in pre_state_dict.keys():
print('Load weight: {}, shape: {}'.format(
weight_name, pre_state_dict[weight_name].shape))
param_state_dict[key] = pre_state_dict[weight_name]
else:
param_state_dict[key] = model_dict[key]
model.set_dict(param_state_dict)
return
param_state_dict = paddle.load(path + ".pdparams")
model.set_dict(param_state_dict)
return
def compress(args):
if args.data == "cifar10":
transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
train_dataset = paddle.vision.datasets.Cifar10(
mode="train", backend="cv2", transform=transform)
val_dataset = paddle.vision.datasets.Cifar10(
mode="test", backend="cv2", transform=transform)
class_dim = 10
image_shape = [3, 32, 32]
pretrain = False
args.total_images = 50000
elif args.data == "imagenet":
import imagenet_reader as reader
train_dataset = reader.ImageNetDataset(mode='train')
val_dataset = reader.ImageNetDataset(mode='val')
class_dim = 1000
image_shape = "3,224,224"
else:
raise ValueError("{} is not supported.".format(args.data))
trainer_num = paddle.distributed.get_world_size()
use_data_parallel = trainer_num != 1
place = paddle.set_device('gpu' if args.use_gpu else 'cpu')
# model definition
if use_data_parallel:
paddle.distributed.init_parallel_env()
pretrain = True if args.data == "imagenet" else False
if args.model == "mobilenet_v1":
net = mobilenet_v1(pretrained=pretrain, num_classes=class_dim)
elif args.model == "mobilenet_v3":
net = MobileNetV3_large_x1_0(class_dim=class_dim)
if pretrain:
load_dygraph_pretrain(net, args.pretrained_model, True)
else:
raise ValueError("{} is not supported.".format(args.model))
_logger.info("Origin model summary:")
paddle.summary(net, (1, 3, 224, 224))
############################################################################################################
# 1. quantization configs
############################################################################################################
quant_config = {
# weight preprocess type, default is None and no preprocessing is performed.
'weight_preprocess_type': None,
# activation preprocess type, default is None and no preprocessing is performed.
'activation_preprocess_type': None,
# weight quantize type, default is 'channel_wise_abs_max'
'weight_quantize_type': 'channel_wise_abs_max',
# activation quantize type, default is 'moving_average_abs_max'
'activation_quantize_type': 'moving_average_abs_max',
# weight quantize bit num, default is 8
'weight_bits': 8,
# activation quantize bit num, default is 8
'activation_bits': 8,
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
'dtype': 'int8',
# window size for 'range_abs_max' quantization. default is 10000
'window_size': 10000,
# The decay coefficient of moving average, default is 0.9
'moving_rate': 0.9,
# for dygraph quantization, layers of type in quantizable_layer_type will be quantized
'quantizable_layer_type': ['Conv2D', 'Linear'],
}
if args.use_pact:
quant_config['activation_preprocess_type'] = 'PACT'
############################################################################################################
# 2. Quantize the model with QAT (quant aware training)
############################################################################################################
quanter = QAT(config=quant_config)
quanter.quantize(net)
_logger.info("QAT model summary:")
paddle.summary(net, (1, 3, 224, 224))
opt, lr = create_optimizer(net, trainer_num, args)
if use_data_parallel:
net = paddle.DataParallel(net)
train_batch_sampler = paddle.io.DistributedBatchSampler(
train_dataset, batch_size=args.batch_size, shuffle=True, drop_last=True)
train_loader = paddle.io.DataLoader(
train_dataset,
batch_sampler=train_batch_sampler,
places=place,
return_list=True,
num_workers=4)
valid_loader = paddle.io.DataLoader(
val_dataset,
places=place,
batch_size=args.batch_size,
shuffle=False,
drop_last=False,
return_list=True,
num_workers=4)
@paddle.no_grad()
def test(epoch, net):
net.eval()
batch_id = 0
acc_top1_ns = []
acc_top5_ns = []
eval_reader_cost = 0.0
eval_run_cost = 0.0
total_samples = 0
reader_start = time.time()
for data in valid_loader():
eval_reader_cost += time.time() - reader_start
image = data[0]
label = data[1]
if args.data == "cifar10":
label = paddle.reshape(label, [-1, 1])
eval_start = time.time()
out = net(image)
acc_top1 = paddle.metric.accuracy(input=out, label=label, k=1)
acc_top5 = paddle.metric.accuracy(input=out, label=label, k=5)
eval_run_cost += time.time() - eval_start
batch_size = image.shape[0]
total_samples += batch_size
if batch_id % args.log_period == 0:
log_period = 1 if batch_id == 0 else args.log_period
_logger.info(
"Eval epoch[{}] batch[{}] - top1: {:.6f}; top5: {:.6f}; avg_reader_cost: {:.6f} s, avg_batch_cost: {:.6f} s, avg_samples: {}, avg_ips: {:.3f} images/s".
format(epoch, batch_id,
np.mean(acc_top1.numpy()),
np.mean(acc_top5.numpy()), eval_reader_cost /
log_period, (eval_reader_cost + eval_run_cost) /
log_period, total_samples / log_period, total_samples
/ (eval_reader_cost + eval_run_cost)))
eval_reader_cost = 0.0
eval_run_cost = 0.0
total_samples = 0
acc_top1_ns.append(np.mean(acc_top1.numpy()))
acc_top5_ns.append(np.mean(acc_top5.numpy()))
batch_id += 1
reader_start = time.time()
_logger.info(
"Final eval epoch[{}] - acc_top1: {:.6f}; acc_top5: {:.6f}".format(
epoch,
np.mean(np.array(acc_top1_ns)), np.mean(np.array(acc_top5_ns))))
return np.mean(np.array(acc_top1_ns))
def cross_entropy(input, target, ls_epsilon):
if ls_epsilon > 0:
if target.shape[-1] != class_dim:
target = paddle.nn.functional.one_hot(target, class_dim)
target = paddle.nn.functional.label_smooth(
target, epsilon=ls_epsilon)
target = paddle.reshape(target, shape=[-1, class_dim])
input = -paddle.nn.functional.log_softmax(input, axis=-1)
cost = paddle.sum(target * input, axis=-1)
else:
cost = paddle.nn.functional.cross_entropy(input=input, label=target)
avg_cost = paddle.mean(cost)
return avg_cost
def train(epoch, net):
net.train()
batch_id = 0
train_reader_cost = 0.0
train_run_cost = 0.0
total_samples = 0
reader_start = time.time()
for data in train_loader():
train_reader_cost += time.time() - reader_start
image = data[0]
label = data[1]
if args.data == "cifar10":
label = paddle.reshape(label, [-1, 1])
train_start = time.time()
out = net(image)
avg_cost = cross_entropy(out, label, args.ls_epsilon)
acc_top1 = paddle.metric.accuracy(input=out, label=label, k=1)
acc_top5 = paddle.metric.accuracy(input=out, label=label, k=5)
avg_cost.backward()
opt.step()
opt.clear_grad()
lr.step()
loss_n = np.mean(avg_cost.numpy())
acc_top1_n = np.mean(acc_top1.numpy())
acc_top5_n = np.mean(acc_top5.numpy())
train_run_cost += time.time() - train_start
batch_size = image.shape[0]
total_samples += batch_size
if batch_id % args.log_period == 0:
log_period = 1 if batch_id == 0 else args.log_period
_logger.info(
"epoch[{}]-batch[{}] lr: {:.6f} - loss: {:.6f}; top1: {:.6f}; top5: {:.6f}; avg_reader_cost: {:.6f} s, avg_batch_cost: {:.6f} s, avg_samples: {}, avg_ips: {:.3f} images/s".
format(epoch, batch_id,
lr.get_lr(), loss_n, acc_top1_n, acc_top5_n,
train_reader_cost / log_period, (
train_reader_cost + train_run_cost) / log_period,
total_samples / log_period, total_samples / (
train_reader_cost + train_run_cost)))
train_reader_cost = 0.0
train_run_cost = 0.0
total_samples = 0
batch_id += 1
reader_start = time.time()
############################################################################################################
# train loop
############################################################################################################
best_acc1 = 0.0
best_epoch = 0
for i in range(args.num_epochs):
train(i, net)
acc1 = test(i, net)
if paddle.distributed.get_rank() == 0:
model_prefix = os.path.join(args.model_save_dir, "epoch_" + str(i))
paddle.save(net.state_dict(), model_prefix + ".pdparams")
paddle.save(opt.state_dict(), model_prefix + ".pdopt")
if acc1 > best_acc1:
best_acc1 = acc1
best_epoch = i
if paddle.distributed.get_rank() == 0:
model_prefix = os.path.join(args.model_save_dir, "best_model")
paddle.save(net.state_dict(), model_prefix + ".pdparams")
paddle.save(opt.state_dict(), model_prefix + ".pdopt")
############################################################################################################
# 3. Save quant aware model
############################################################################################################
if paddle.distributed.get_rank() == 0:
# load best model
load_dygraph_pretrain(net,
os.path.join(args.model_save_dir, "best_model"))
path = os.path.join(args.model_save_dir, "inference_model", 'qat_model')
quanter.save_quantized_model(
net,
path,
input_spec=[
paddle.static.InputSpec(
shape=[None, 3, 224, 224], dtype='float32')
])
def main():
args = parser.parse_args()
print_arguments(args)
compress(args)
if __name__ == '__main__':
main()