1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
### NOTE: the API of this file is based on Paddle1.8, the API in layers.py is based on Paddle2.0
import numpy as np
import logging
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.dygraph_utils as dygraph_utils
from paddle.fluid.data_feeder import check_variable_and_dtype
from paddle.fluid.framework import _varbase_creator
from paddle.fluid.dygraph.nn import InstanceNorm, Conv2D, Conv2DTranspose, BatchNorm
from ...common import get_logger
from .utils.utils import compute_start_end, get_same_padding, convert_to_list
__all__ = [
'SuperConv2D', 'SuperConv2DTranspose', 'SuperSeparableConv2D',
'SuperBatchNorm', 'SuperLinear', 'SuperInstanceNorm', 'Block',
'SuperGroupConv2D', 'SuperDepthwiseConv2D', 'SuperGroupConv2DTranspose',
'SuperDepthwiseConv2DTranspose', 'SuperLayerNorm', 'SuperEmbedding'
]
_logger = get_logger(__name__, level=logging.INFO)
### TODO: if task is elastic width, need to add re_organize_middle_weight in 1x1 conv in MBBlock
_cnt = 0
def counter():
global _cnt
_cnt += 1
return _cnt
class BaseBlock(fluid.dygraph.Layer):
def __init__(self, key=None):
super(BaseBlock, self).__init__()
if key is not None:
self._key = str(key)
else:
self._key = self.__class__.__name__ + str(counter())
# set SuperNet class
def set_supernet(self, supernet):
self.__dict__['supernet'] = supernet
@property
def key(self):
return self._key
class Block(BaseBlock):
"""
Model is composed of nest blocks.
Parameters:
fn(Layer): instance of super layers, such as: SuperConv2D(3, 5, 3).
key(str, optional): key of this layer, one-to-one correspondence between key and candidate config. Default: None.
"""
def __init__(self, fn, fixed=False, key=None):
super(Block, self).__init__(key)
self.fn = fn
self.fixed = fixed
self.candidate_config = self.fn.candidate_config
def forward(self, *inputs, **kwargs):
out = self.supernet.layers_forward(self, *inputs, **kwargs)
return out
class SuperConv2D(fluid.dygraph.Conv2D):
"""
This interface is used to construct a callable object of the ``SuperConv2D`` class.
The difference between ```SuperConv2D``` and ```Conv2D``` is: ```SuperConv2D``` need
to feed a config dictionary with the format of {'channel', num_of_channel} represents
the channels of the outputs, used to change the first dimension of weight and bias,
only train the first channels of the weight and bias.
Note: the channel in config need to less than first defined.
The super convolution2D layer calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. Input and
Output are in NCHW format, where N is batch size, C is the number of
the feature map, H is the height of the feature map, and W is the width of the feature map.
Filter's shape is [MCHW] , where M is the number of output feature map,
C is the number of input feature map, H is the height of the filter,
and W is the width of the filter. If the groups is greater than 1,
C will equal the number of input feature map divided by the groups.
Please refer to UFLDL's `convolution
<http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
for more details.
If bias attribution and activation type are provided, bias is added to the
output of the convolution, and the corresponding activation function is
applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \\sigma (W \\ast X + b)
Where:
* :math:`X`: Input value, a ``Tensor`` with NCHW format.
* :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
.. math::
H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
Parameters:
num_channels(int): The number of channels in the input image.
num_filters(int): The number of filter. It is as same as the output
feature map.
filter_size (int or tuple): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
candidate_config(dict, optional): Dictionary descripts candidate config of this layer,
such as {'kernel_size': (3, 5, 7), 'channel': (4, 6, 8)}, means the kernel size of
this layer can be choose from (3, 5, 7), the key of candidate_config
only can be 'kernel_size', 'channel' and 'expand_ratio', 'channel' and 'expand_ratio'
CANNOT be set at the same time. Default: None.
transform_kernel(bool, optional): Whether to use transform matrix to transform a large filter
to a small filter. Default: False.
stride (int or tuple, optional): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: 1.
padding (int or tuple, optional): The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: 0.
dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: 1.
groups (int, optional): The groups number of the Conv2d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: 1.
param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True.
act (str, optional): Activation type, if it is set to None, activation is not appended.
Default: None.
dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
Attribute:
**weight** (Parameter): the learnable weights of filter of this layer.
**bias** (Parameter or None): the learnable bias of this layer.
Returns:
None
Raises:
ValueError: if ``use_cudnn`` is not a bool value.
Examples:
.. code-block:: python
from paddle.fluid.dygraph.base import to_variable
import paddle.fluid as fluid
from paddleslim.core.layers import SuperConv2D
import numpy as np
data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
with fluid.dygraph.guard():
super_conv2d = SuperConv2D(3, 10, 3)
config = {'channel': 5}
data = to_variable(data)
conv = super_conv2d(data, config)
"""
### NOTE: filter_size, num_channels and num_filters must be the max of candidate to define a largest network.
def __init__(self,
num_channels,
num_filters,
filter_size,
candidate_config={},
transform_kernel=False,
stride=1,
dilation=1,
padding=0,
groups=None,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
dtype='float32'):
### NOTE: padding always is 0, add padding in forward because of kernel size is uncertain
super(SuperConv2D, self).__init__(
num_channels, num_filters, filter_size, stride, padding, dilation,
groups, param_attr, bias_attr, use_cudnn, act, dtype)
if isinstance(self._filter_size, int):
self._filter_size = convert_to_list(self._filter_size, 2)
self.candidate_config = candidate_config
if len(candidate_config.items()) != 0:
for k, v in candidate_config.items():
candidate_config[k] = list(set(v))
self.ks_set = candidate_config[
'kernel_size'] if 'kernel_size' in candidate_config else None
self.expand_ratio = candidate_config[
'expand_ratio'] if 'expand_ratio' in candidate_config else None
self.channel = candidate_config[
'channel'] if 'channel' in candidate_config else None
self.base_channel = self._num_filters
if self.expand_ratio != None:
self.base_channel = int(self._num_filters / max(self.expand_ratio))
self.transform_kernel = transform_kernel
if self.ks_set != None:
self.ks_set.sort()
if self.transform_kernel != False:
scale_param = dict()
### create parameter to transform kernel
for i in range(len(self.ks_set) - 1):
ks_small = self.ks_set[i]
ks_large = self.ks_set[i + 1]
param_name = '%dto%d_matrix' % (ks_large, ks_small)
ks_t = ks_small**2
scale_param[param_name] = self.create_parameter(
attr=fluid.ParamAttr(
name=self._full_name + param_name,
initializer=fluid.initializer.NumpyArrayInitializer(
np.eye(ks_t))),
shape=(ks_t, ks_t),
dtype=self._dtype)
for name, param in scale_param.items():
setattr(self, name, param)
def get_active_filter(self, in_nc, out_nc, kernel_size):
start, end = compute_start_end(self._filter_size[0], kernel_size)
### if NOT transform kernel, intercept a center filter with kernel_size from largest filter
filters = self.weight[:out_nc, :in_nc, start:end, start:end]
if self.transform_kernel != False and kernel_size < self._filter_size[
0]:
### if transform kernel, then use matrix to transform
start_filter = self.weight[:out_nc, :in_nc, :, :]
for i in range(len(self.ks_set) - 1, 0, -1):
src_ks = self.ks_set[i]
if src_ks <= kernel_size:
break
target_ks = self.ks_set[i - 1]
start, end = compute_start_end(src_ks, target_ks)
_input_filter = start_filter[:, :, start:end, start:end]
_input_filter = fluid.layers.reshape(
_input_filter,
shape=[(_input_filter.shape[0] * _input_filter.shape[1]),
-1])
_tmp_filter = _varbase_creator(dtype=_input_filter.dtype)
core.ops.matmul(_input_filter,
self.__getattr__('%dto%d_matrix' %
(src_ks, target_ks)),
_tmp_filter, 'transpose_X', False,
'transpose_Y', False, "alpha", 1)
_tmp_filter = fluid.layers.reshape(
_tmp_filter,
shape=[
filters.shape[0], filters.shape[1], target_ks, target_ks
])
start_filter = _tmp_filter
filters = start_filter
return filters
def get_groups_in_out_nc(self, in_nc, out_nc):
if self._groups == 1 or self._groups == None:
### standard conv
return self._groups, in_nc, out_nc
elif self._groups == self._num_channels:
### depthwise convolution
if in_nc != out_nc:
_logger.debug(
"input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
format(in_nc, out_nc))
groups = in_nc
out_nc = in_nc
return groups, in_nc, out_nc
else:
### groups convolution
### conv: weight: (Cout, Cin/G, Kh, Kw)
groups = self._groups
in_nc = int(in_nc // groups)
return groups, in_nc, out_nc
def forward(self, input, kernel_size=None, expand_ratio=None, channel=None):
self.cur_config = {
'kernel_size': kernel_size,
'expand_ratio': expand_ratio,
'channel': channel
}
in_nc = int(input.shape[1])
assert (
expand_ratio == None or channel == None
), "expand_ratio and channel CANNOT be NOT None at the same time."
if expand_ratio != None:
out_nc = int(expand_ratio * self.base_channel)
elif channel != None:
out_nc = int(channel)
else:
out_nc = self._num_filters
ks = int(self._filter_size[0]) if kernel_size == None else int(
kernel_size)
groups, weight_in_nc, weight_out_nc = self.get_groups_in_out_nc(in_nc,
out_nc)
weight = self.get_active_filter(weight_in_nc, weight_out_nc, ks)
if kernel_size != None or 'kernel_size' in self.candidate_config.keys():
padding = convert_to_list(get_same_padding(ks), 2)
else:
padding = self._padding
if self._l_type == 'conv2d':
attrs = ('strides', self._stride, 'paddings', padding, 'dilations',
self._dilation, 'groups', groups
if groups else 1, 'use_cudnn', self._use_cudnn)
out = core.ops.conv2d(input, weight, *attrs)
elif self._l_type == 'depthwise_conv2d':
attrs = ('strides', self._stride, 'paddings', padding, 'dilations',
self._dilation, 'groups', groups
if groups else self._groups, 'use_cudnn', self._use_cudnn)
out = core.ops.depthwise_conv2d(input, weight, *attrs)
else:
raise ValueError("conv type error")
pre_bias = out
out_nc = int(pre_bias.shape[1])
if self.bias is not None:
bias = self.bias[:out_nc]
pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, bias, 1)
else:
pre_act = pre_bias
return dygraph_utils._append_activation_in_dygraph(pre_act, self._act)
class SuperGroupConv2D(SuperConv2D):
def get_groups_in_out_nc(self, in_nc, out_nc):
### groups convolution
### conv: weight: (Cout, Cin/G, Kh, Kw)
groups = self._groups
in_nc = int(in_nc // groups)
return groups, in_nc, out_nc
class SuperDepthwiseConv2D(SuperConv2D):
### depthwise convolution
def get_groups_in_out_nc(self, in_nc, out_nc):
if in_nc != out_nc:
_logger.debug(
"input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
format(in_nc, out_nc))
groups = in_nc
out_nc = in_nc
return groups, in_nc, out_nc
class SuperConv2DTranspose(fluid.dygraph.Conv2DTranspose):
"""
This interface is used to construct a callable object of the ``SuperConv2DTranspose``
class.
The difference between ```SuperConv2DTranspose``` and ```Conv2DTranspose``` is:
```SuperConv2DTranspose``` need to feed a config dictionary with the format of
{'channel', num_of_channel} represents the channels of the outputs, used to change
the first dimension of weight and bias, only train the first channels of the weight
and bias.
Note: the channel in config need to less than first defined.
The super convolution2D transpose layer calculates the output based on the input,
filter, and dilations, strides, paddings. Input and output
are in NCHW format. Where N is batch size, C is the number of feature map,
H is the height of the feature map, and W is the width of the feature map.
Filter's shape is [MCHW] , where M is the number of input feature map,
C is the number of output feature map, H is the height of the filter,
and W is the width of the filter. If the groups is greater than 1,
C will equal the number of input feature map divided by the groups.
If bias attribution and activation type are provided, bias is added to
the output of the convolution, and the corresponding activation function
is applied to the final result.
The details of convolution transpose layer, please refer to the following explanation and references
`conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \\ast X + b)
Where:
* :math:`X`: Input value, a ``Tensor`` with NCHW format.
* :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
.. math::
H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Parameters:
num_channels(int): The number of channels in the input image.
num_filters(int): The number of the filter. It is as same as the output
feature map.
filter_size(int or tuple): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
candidate_config(dict, optional): Dictionary descripts candidate config of this layer,
such as {'kernel_size': (3, 5, 7), 'channel': (4, 6, 8)}, means the kernel size of
this layer can be choose from (3, 5, 7), the key of candidate_config
only can be 'kernel_size', 'channel' and 'expand_ratio', 'channel' and 'expand_ratio'
CANNOT be set at the same time. Default: None.
transform_kernel(bool, optional): Whether to use transform matrix to transform a large filter
to a small filter. Default: False.
output_size(int or tuple, optional): The output image size. If output size is a
tuple, it must contain two integers, (image_H, image_W). None if use
filter_size, padding, and stride to calculate output_size.
if output_size and filter_size are specified at the same time, They
should follow the formula above. Default: None.
padding(int or tuple, optional): The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: 0.
stride(int or tuple, optional): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: 1.
dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: 1.
groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
when group=2, the first half of the filters is only connected to the
first half of the input channels, while the second half of the
filters is only connected to the second half of the input channels.
Default: 1.
param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv2d_transpose
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True.
act (str, optional): Activation type, if it is set to None, activation is not appended.
Default: None.
dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
Attribute:
**weight** (Parameter): the learnable weights of filters of this layer.
**bias** (Parameter or None): the learnable bias of this layer.
Returns:
None
Examples:
.. code-block:: python
import paddle.fluid as fluid
from paddleslim.core.layers import SuperConv2DTranspose
import numpy as np
with fluid.dygraph.guard():
data = np.random.random((3, 32, 32, 5)).astype('float32')
config = {'channel': 5
super_convtranspose = SuperConv2DTranspose(num_channels=32, num_filters=10, filter_size=3)
ret = super_convtranspose(fluid.dygraph.base.to_variable(data), config)
"""
def __init__(self,
num_channels,
num_filters,
filter_size,
output_size=None,
candidate_config={},
transform_kernel=False,
stride=1,
dilation=1,
padding=0,
groups=None,
param_attr=None,
bias_attr=None,
use_cudnn=True,
act=None,
dtype='float32'):
super(SuperConv2DTranspose, self).__init__(
num_channels, num_filters, filter_size, output_size, padding,
stride, dilation, groups, param_attr, bias_attr, use_cudnn, act,
dtype)
self.candidate_config = candidate_config
if len(self.candidate_config.items()) != 0:
for k, v in candidate_config.items():
candidate_config[k] = list(set(v))
self.ks_set = candidate_config[
'kernel_size'] if 'kernel_size' in candidate_config else None
if isinstance(self._filter_size, int):
self._filter_size = convert_to_list(self._filter_size, 2)
self.expand_ratio = candidate_config[
'expand_ratio'] if 'expand_ratio' in candidate_config else None
self.channel = candidate_config[
'channel'] if 'channel' in candidate_config else None
self.base_channel = self._num_filters
if self.expand_ratio:
self.base_channel = int(self._num_filters / max(self.expand_ratio))
self.transform_kernel = transform_kernel
if self.ks_set != None:
self.ks_set.sort()
if self.transform_kernel != False:
scale_param = dict()
### create parameter to transform kernel
for i in range(len(self.ks_set) - 1):
ks_small = self.ks_set[i]
ks_large = self.ks_set[i + 1]
param_name = '%dto%d_matrix' % (ks_large, ks_small)
ks_t = ks_small**2
scale_param[param_name] = self.create_parameter(
attr=fluid.ParamAttr(
name=self._full_name + param_name,
initializer=fluid.initializer.NumpyArrayInitializer(
np.eye(ks_t))),
shape=(ks_t, ks_t),
dtype=self._dtype)
for name, param in scale_param.items():
setattr(self, name, param)
def get_active_filter(self, in_nc, out_nc, kernel_size):
start, end = compute_start_end(self._filter_size[0], kernel_size)
filters = self.weight[:in_nc, :out_nc, start:end, start:end]
if self.transform_kernel != False and kernel_size < self._filter_size[
0]:
start_filter = self.weight[:in_nc, :out_nc, :, :]
for i in range(len(self.ks_set) - 1, 0, -1):
src_ks = self.ks_set[i]
if src_ks <= kernel_size:
break
target_ks = self.ks_set[i - 1]
start, end = compute_start_end(src_ks, target_ks)
_input_filter = start_filter[:, :, start:end, start:end]
_input_filter = fluid.layers.reshape(
_input_filter,
shape=[(_input_filter.shape[0] * _input_filter.shape[1]),
-1])
_tmp_filter = _varbase_creator(dtype=_input_filter.dtype)
core.ops.matmul(_input_filter,
self.__getattr__('%dto%d_matrix' %
(src_ks, target_ks)),
_tmp_filter, 'transpose_X', False,
'transpose_Y', False, "alpha", 1)
_tmp_filter = fluid.layers.reshape(
_tmp_filter,
shape=[
filters.shape[0], filters.shape[1], target_ks, target_ks
])
start_filter = _tmp_filter
filters = start_filter
return filters
def get_groups_in_out_nc(self, in_nc, out_nc):
if self._groups == 1 or self._groups == None:
### standard conv
return self._groups, in_nc, out_nc
elif self._groups == self._num_channels:
### depthwise convolution
if in_nc != out_nc:
_logger.debug(
"input channel and output channel in depthwise conv is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
format(in_nc, out_nc))
groups = in_nc
out_nc = in_nc
return groups, in_nc, out_nc
else:
### groups convolution
### groups conv transpose: weight: (Cin, Cout/G, Kh, Kw)
groups = self._groups
out_nc = int(out_nc // groups)
return groups, in_nc, out_nc
def forward(self, input, kernel_size=None, expand_ratio=None, channel=None):
self.cur_config = {
'kernel_size': kernel_size,
'expand_ratio': expand_ratio,
'channel': channel
}
in_nc = int(input.shape[1])
assert (
expand_ratio == None or channel == None
), "expand_ratio and channel CANNOT be NOT None at the same time."
if expand_ratio != None:
out_nc = int(expand_ratio * self.base_channel)
elif channel != None:
out_nc = int(channel)
else:
out_nc = self._num_filters
ks = int(self._filter_size[0]) if kernel_size == None else int(
kernel_size)
groups, weight_in_nc, weight_out_nc = self.get_groups_in_out_nc(in_nc,
out_nc)
weight = self.get_active_filter(weight_in_nc, weight_out_nc, ks)
if kernel_size != None or 'kernel_size' in self.candidate_config.keys():
padding = convert_to_list(get_same_padding(ks), 2)
else:
padding = self._padding
op = getattr(core.ops, self._op_type)
out = op(input, weight, 'output_size', self._output_size, 'strides',
self._stride, 'paddings', padding, 'dilations', self._dilation,
'groups', groups, 'use_cudnn', self._use_cudnn)
pre_bias = out
out_nc = int(pre_bias.shape[1])
if self.bias is not None:
bias = self.bias[:out_nc]
pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, bias, 1)
else:
pre_act = pre_bias
return dygraph_utils._append_activation_in_dygraph(
pre_act, act=self._act)
class SuperGroupConv2DTranspose(SuperConv2DTranspose):
def get_groups_in_out_nc(self, in_nc, out_nc):
### groups convolution
### groups conv transpose: weight: (Cin, Cout/G, Kh, Kw)
groups = self._groups
out_nc = int(out_nc // groups)
return groups, in_nc, out_nc
class SuperDepthwiseConv2DTranspose(SuperConv2DTranspose):
def get_groups_in_out_nc(self, in_nc, out_nc):
if in_nc != out_nc:
_logger.debug(
"input channel and output channel in depthwise conv transpose is different, change output channel to input channel! origin channel:(in_nc {}, out_nc {}): ".
format(in_nc, out_nc))
groups = in_nc
out_nc = in_nc
return groups, in_nc, out_nc
### NOTE: only search channel, write for GAN-compression, maybe change to SuperDepthwiseConv and SuperConv after.
class SuperSeparableConv2D(fluid.dygraph.Layer):
"""
This interface is used to construct a callable object of the ``SuperSeparableConv2D``
class.
The difference between ```SuperSeparableConv2D``` and ```SeparableConv2D``` is:
```SuperSeparableConv2D``` need to feed a config dictionary with the format of
{'channel', num_of_channel} represents the channels of the first conv's outputs and
the second conv's inputs, used to change the first dimension of weight and bias,
only train the first channels of the weight and bias.
The architecture of super separable convolution2D op is [Conv2D, norm layer(may be BatchNorm
or InstanceNorm), Conv2D]. The first conv is depthwise conv, the filter number is input channel
multiply scale_factor, the group is equal to the number of input channel. The second conv
is standard conv, which filter size and stride size are 1.
Parameters:
num_channels(int): The number of channels in the input image.
num_filters(int): The number of the second conv's filter. It is as same as the output
feature map.
filter_size(int or tuple): The first conv's filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.
padding(int or tuple, optional): The first conv's padding size. If padding is a tuple,
it must contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: 0.
stride(int or tuple, optional): The first conv's stride size. If stride is a tuple,
it must contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: 1.
dilation(int or tuple, optional): The first conv's dilation size. If dilation is a tuple,
it must contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: 1.
norm_layer(class): The normalization layer between two convolution. Default: InstanceNorm.
bias_attr (ParamAttr or bool, optional): The attribute for the bias of convolution.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, convolution
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
scale_factor(float): The scale factor of the first conv's output channel. Default: 1.
use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True.
Returns:
None
"""
def __init__(self,
num_channels,
num_filters,
filter_size,
candidate_config={},
stride=1,
padding=0,
dilation=1,
norm_layer=InstanceNorm,
bias_attr=None,
scale_factor=1,
use_cudnn=False):
super(SuperSeparableConv2D, self).__init__()
self.conv = fluid.dygraph.LayerList([
fluid.dygraph.nn.Conv2D(
num_channels=num_channels,
num_filters=num_channels * scale_factor,
filter_size=filter_size,
stride=stride,
padding=padding,
use_cudnn=False,
groups=num_channels,
bias_attr=bias_attr)
])
self.conv.extend([norm_layer(num_channels * scale_factor)])
self.conv.extend([
fluid.dygraph.nn.Conv2D(
num_channels=num_channels * scale_factor,
num_filters=num_filters,
filter_size=1,
stride=1,
use_cudnn=use_cudnn,
bias_attr=bias_attr)
])
self.candidate_config = candidate_config
self.expand_ratio = candidate_config[
'expand_ratio'] if 'expand_ratio' in candidate_config else None
self.base_output_dim = self.conv[0]._num_filters
if self.expand_ratio != None:
self.base_output_dim = int(self.conv[0]._num_filters /
max(self.expand_ratio))
def forward(self, input, expand_ratio=None, channel=None):
self.cur_config = {'expand_ratio': expand_ratio, 'channel': channel}
in_nc = int(input.shape[1])
assert (
expand_ratio == None or channel == None
), "expand_ratio and channel CANNOT be NOT None at the same time."
if expand_ratio != None:
out_nc = int(expand_ratio * self.base_output_dim)
elif channel != None:
out_nc = int(channel)
else:
out_nc = self.conv[0]._num_filters
weight = self.conv[0].weight[:in_nc]
### conv1
if self.conv[0]._l_type == 'conv2d':
attrs = ('strides', self.conv[0]._stride, 'paddings',
self.conv[0]._padding, 'dilations', self.conv[0]._dilation,
'groups', in_nc, 'use_cudnn', self.conv[0]._use_cudnn)
out = core.ops.conv2d(input, weight, *attrs)
elif self.conv[0]._l_type == 'depthwise_conv2d':
attrs = ('strides', self.conv[0]._stride, 'paddings',
self.conv[0]._padding, 'dilations', self.conv[0]._dilation,
'groups', in_nc, 'use_cudnn', self.conv[0]._use_cudnn)
out = core.ops.depthwise_conv2d(input, weight, *attrs)
else:
raise ValueError("conv type error")
pre_bias = out
if self.conv[0].bias is not None:
bias = self.conv[0].bias[:in_nc]
pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, bias, 1)
else:
pre_act = pre_bias
conv0_out = dygraph_utils._append_activation_in_dygraph(
pre_act, self.conv[0]._act)
norm_out = self.conv[1](conv0_out)
weight = self.conv[2].weight[:out_nc, :in_nc, :, :]
if self.conv[2]._l_type == 'conv2d':
attrs = ('strides', self.conv[2]._stride, 'paddings',
self.conv[2]._padding, 'dilations', self.conv[2]._dilation,
'groups', self.conv[2]._groups if self.conv[2]._groups else
1, 'use_cudnn', self.conv[2]._use_cudnn)
out = core.ops.conv2d(norm_out, weight, *attrs)
elif self.conv[2]._l_type == 'depthwise_conv2d':
attrs = ('strides', self.conv[2]._stride, 'paddings',
self.conv[2]._padding, 'dilations', self.conv[2]._dilation,
'groups', self.conv[2]._groups, 'use_cudnn',
self.conv[2]._use_cudnn)
out = core.ops.depthwise_conv2d(norm_out, weight, *attrs)
else:
raise ValueError("conv type error")
pre_bias = out
if self.conv[2].bias is not None:
bias = self.conv[2].bias[:out_nc]
pre_act = dygraph_utils._append_bias_in_dygraph(pre_bias, bias, 1)
else:
pre_act = pre_bias
conv1_out = dygraph_utils._append_activation_in_dygraph(
pre_act, self.conv[2]._act)
return conv1_out
class SuperLinear(fluid.dygraph.Linear):
"""
"""
def __init__(self,
input_dim,
output_dim,
candidate_config={},
param_attr=None,
bias_attr=None,
act=None,
dtype="float32"):
super(SuperLinear, self).__init__(input_dim, output_dim, param_attr,
bias_attr, act, dtype)
self._param_attr = param_attr
self._bias_attr = bias_attr
self.output_dim = output_dim
self.candidate_config = candidate_config
self.expand_ratio = candidate_config[
'expand_ratio'] if 'expand_ratio' in candidate_config else None
self.base_output_dim = self.output_dim
if self.expand_ratio != None:
self.base_output_dim = int(self.output_dim / max(self.expand_ratio))
def forward(self, input, expand_ratio=None, channel=None):
self.cur_config = {'expand_ratio': expand_ratio, 'channel': channel}
### weight: (Cin, Cout)
in_nc = int(input.shape[-1])
assert (
expand_ratio == None or channel == None
), "expand_ratio and channel CANNOT be NOT None at the same time."
if expand_ratio != None:
out_nc = int(expand_ratio * self.base_output_dim)
elif channel != None:
out_nc = int(channel)
else:
out_nc = self.output_dim
weight = self.weight[:in_nc, :out_nc]
if self._bias_attr != False:
bias = self.bias[:out_nc]
use_bias = True
pre_bias = _varbase_creator(dtype=input.dtype)
core.ops.matmul(input, weight, pre_bias, 'transpose_X', False,
'transpose_Y', False, "alpha", 1)
if self._bias_attr != False:
pre_act = dygraph_utils._append_bias_in_dygraph(
pre_bias, bias, axis=len(input.shape) - 1)
else:
pre_act = pre_bias
return dygraph_utils._append_activation_in_dygraph(pre_act, self._act)
class SuperBatchNorm(fluid.dygraph.BatchNorm):
"""
add comment
"""
def __init__(self,
num_channels,
act=None,
is_test=False,
momentum=0.9,
epsilon=1e-05,
param_attr=None,
bias_attr=None,
dtype='float32',
data_layout='NCHW',
in_place=False,
moving_mean_name=None,
moving_variance_name=None,
do_model_average_for_mean_and_var=True,
use_global_stats=False,
trainable_statistics=False):
super(SuperBatchNorm, self).__init__(
num_channels, act, is_test, momentum, epsilon, param_attr,
bias_attr, dtype, data_layout, in_place, moving_mean_name,
moving_variance_name, do_model_average_for_mean_and_var,
use_global_stats, trainable_statistics)
def forward(self, input):
feature_dim = int(input.shape[1])
weight = self.weight[:feature_dim]
bias = self.bias[:feature_dim]
mean = self._mean[:feature_dim]
variance = self._variance[:feature_dim]
mean_out = mean
variance_out = variance
attrs = ("momentum", self._momentum, "epsilon", self._epsilon,
"is_test", not self.training, "data_layout", self._data_layout,
"use_mkldnn", False, "fuse_with_relu", self._fuse_with_relu,
"use_global_stats", self._use_global_stats,
'trainable_statistics', self._trainable_statistics)
batch_norm_out = core.ops.batch_norm(
input, weight, bias, mean, variance, mean_out, variance_out, *attrs)
return dygraph_utils._append_activation_in_dygraph(
batch_norm_out[0], act=self._act)
class SuperInstanceNorm(fluid.dygraph.InstanceNorm):
"""
"""
def __init__(self,
num_channels,
epsilon=1e-05,
param_attr=None,
bias_attr=None,
dtype='float32'):
super(SuperInstanceNorm, self).__init__(num_channels, epsilon,
param_attr, bias_attr, dtype)
def forward(self, input):
feature_dim = int(input.shape[1])
if self._param_attr == False and self._bias_attr == False:
scale = None
bias = None
else:
scale = self.scale[:feature_dim]
bias = self.bias[:feature_dim]
out, _, _ = core.ops.instance_norm(input, scale, bias, 'epsilon',
self._epsilon)
return out
class SuperLayerNorm(fluid.dygraph.LayerNorm):
def __init__(self,
normalized_shape,
scale=True,
shift=True,
epsilon=1e-05,
param_attr=None,
bias_attr=None,
act=None,
dtype='float32'):
super(SuperLayerNorm,
self).__init__(normalized_shape, scale, shift, epsilon,
param_attr, bias_attr, act, dtype)
def forward(self, input):
input_shape = list(input.shape)
input_ndim = len(input_shape)
normalized_ndim = len(self._normalized_shape)
self._begin_norm_axis = input_ndim - normalized_ndim
### TODO(ceci3): fix if normalized_shape is not a single number
feature_dim = int(input.shape[-1])
weight = self.weight[:feature_dim]
bias = self.bias[:feature_dim]
pre_act, _, _ = core.ops.layer_norm(input, weight, bias, 'epsilon',
self._epsilon, 'begin_norm_axis',
self._begin_norm_axis)
return dygraph_utils._append_activation_in_dygraph(
pre_act, act=self._act)
class SuperEmbedding(fluid.dygraph.Embedding):
def __init__(self,
size,
candidate_config={},
is_sparse=False,
is_distributed=False,
padding_idx=None,
param_attr=None,
dtype='float32'):
super(SuperEmbedding, self).__init__(size, is_sparse, is_distributed,
padding_idx, param_attr, dtype)
self.candidate_config = candidate_config
self.expand_ratio = candidate_config[
'expand_ratio'] if 'expand_ratio' in candidate_config else None
self.base_output_dim = self._size[-1]
if self.expand_ratio != None:
self.base_output_dim = int(self._size[-1] / max(self.expand_ratio))
def forward(self, input, expand_ratio=None, channel=None):
assert (
expand_ratio == None or channel == None
), "expand_ratio and channel CANNOT be NOT None at the same time."
if expand_ratio != None:
out_nc = int(expand_ratio * self.base_output_dim)
elif channel != None:
out_nc = int(channel)
else:
out_nc = self._size[-1]
weight = self.weight[:, :out_nc]
return core.ops.lookup_table_v2(
weight, input, 'is_sparse', self._is_sparse, 'is_distributed',
self._is_distributed, 'remote_prefetch', self._remote_prefetch,
'padding_idx', self._padding_idx)