quanter.py 10.9 KB
Newer Older
F
ftian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import paddle
import paddle.fluid as fluid
from paddle.fluid.framework import IrGraph
from paddle.fluid.contrib.slim.quantization import QuantizationTransformPass
from paddle.fluid.contrib.slim.quantization import QuantizationFreezePass
from paddle.fluid.contrib.slim.quantization import ConvertToInt8Pass
from paddle.fluid.contrib.slim.quantization import TransformForMobilePass
S
slf12 已提交
23
from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
F
ftian 已提交
24 25
from paddle.fluid import core

S
slf12 已提交
26 27 28 29 30 31 32
WEIGHT_QUANTIZATION_TYPES = [
    'abs_max', 'channel_wise_abs_max', 'range_abs_max',
    'moving_average_abs_max'
]
ACTIVATION_QUANTIZATION_TYPES = [
    'abs_max', 'range_abs_max', 'moving_average_abs_max'
]
F
ftian 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
VALID_DTYPES = ['int8']

_quant_config_default = {
    # weight quantize type, default is 'abs_max'
    'weight_quantize_type': 'abs_max',
    # activation quantize type, default is 'abs_max'
    'activation_quantize_type': 'abs_max',
    # weight quantize bit num, default is 8
    'weight_bits': 8,
    # activation quantize bit num, default is 8
    'activation_bits': 8,
    # ops of name_scope in not_quant_pattern list, will not be quantized
    'not_quant_pattern': ['skip_quant'],
    # ops of type in quantize_op_types, will be quantized
    'quantize_op_types': ['conv2d', 'depthwise_conv2d', 'mul'],
    # data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
    'dtype': 'int8',
    # window size for 'range_abs_max' quantization. defaulf is 10000
    'window_size': 10000,
    # The decay coefficient of moving average, default is 0.9
    'moving_rate': 0.9,
    # if set quant_weight_only True, then only quantize parameters of layers which need to be quantized,
    # and activations will not be quantized.
    'quant_weight_only': False
}


def _parse_configs(user_config):
    """
    check user configs is valid, and set default value if user not config.
    Args:
        user_config(dict):the config of user.
    Return:
        configs(dict): final configs will be used.
    """

    configs = copy.deepcopy(_quant_config_default)
    configs.update(user_config)

    # check configs is valid
    assert configs['weight_quantize_type'] in WEIGHT_QUANTIZATION_TYPES, \
        "Unknown weight_quantize_type: '%s'. It can only be " + " ".join(WEIGHT_QUANTIZATION_TYPES)

    assert configs['activation_quantize_type'] in ACTIVATION_QUANTIZATION_TYPES, \
        "Unknown activation_quantize_type: '%s'. It can only be " + " ".join(ACTIVATION_QUANTIZATION_TYPES)

    assert isinstance(configs['weight_bits'], int), \
        "weight_bits must be int value."

    assert (configs['weight_bits'] >= 1 and configs['weight_bits'] <= 16), \
        "weight_bits should be between 1 and 16."

    assert isinstance(configs['activation_bits'], int), \
        "activation_bits must be int value."

    assert (configs['activation_bits'] >= 1 and configs['activation_bits'] <= 16), \
        "activation_bits should be between 1 and 16."

    assert isinstance(configs['not_quant_pattern'], list), \
        "not_quant_pattern must be a list"

    assert isinstance(configs['quantize_op_types'], list), \
        "quantize_op_types must be a list"

    assert isinstance(configs['dtype'], str), \
        "dtype must be a str."

    assert (configs['dtype'] in VALID_DTYPES), \
        "dtype can only be " + " ".join(VALID_DTYPES)

    assert isinstance(configs['window_size'], int), \
        "window_size must be int value, window size for 'range_abs_max' quantization, default is 10000."

    assert isinstance(configs['moving_rate'], float), \
        "moving_rate must be float value, The decay coefficient of moving average, default is 0.9."

    assert isinstance(configs['quant_weight_only'], bool), \
        "quant_weight_only must be bool value, if set quant_weight_only True, " \
        "then only quantize parameters of layers which need to be quantized, " \
        " and activations will not be quantized."

    return configs


def quant_aware(program, place, config, scope=None, for_test=False):
    """
    add trainable quantization ops in program.
    Args:
        program(fluid.Program): program
        scope(fluid.Scope): the scope to store var, it's should be the value of program's scope, usually it's fluid.global_scope().
        place(fluid.CPUPlace or fluid.CUDAPlace): place
        config(dict): configs for quantization, default values are in quant_config_default dict.
        for_test: if program is test program, for_test should be set True, else False.
    Return:
        fluid.Program: user can finetune this quantization program to enhance the accuracy.
    """

    scope = fluid.global_scope() if not scope else scope
    assert isinstance(config, dict), "config must be dict"

    assert 'weight_quantize_type' in config.keys(
    ), 'weight_quantize_type must be configured'
    assert 'activation_quantize_type' in config.keys(
    ), 'activation_quantize_type must be configured'

    config = _parse_configs(config)
    main_graph = IrGraph(core.Graph(program.desc), for_test=for_test)

    transform_pass = QuantizationTransformPass(
        scope=scope,
        place=place,
        weight_bits=config['weight_bits'],
        activation_bits=config['activation_bits'],
        activation_quantize_type=config['activation_quantize_type'],
        weight_quantize_type=config['weight_quantize_type'],
        window_size=config['window_size'],
        moving_rate=config['moving_rate'],
        quantizable_op_type=config['quantize_op_types'],
        skip_pattern=config['not_quant_pattern'])

    transform_pass.apply(main_graph)

    if for_test:
        quant_program = main_graph.to_program()
    else:
        quant_program = fluid.CompiledProgram(main_graph.graph)
    return quant_program


S
slf12 已提交
162 163
def quant_post(executor,
               model_dir,
S
slf12 已提交
164
               quantize_model_path,
S
slf12 已提交
165 166 167 168
               sample_generator,
               model_filename=None,
               params_filename=None,
               batch_size=16,
S
slf12 已提交
169 170 171
               batch_nums=None,
               scope=None,
               algo='KL',
S
slf12 已提交
172
               quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"]):
F
ftian 已提交
173
    """
S
slf12 已提交
174
    The function utilizes post training quantization method to quantize the 
S
slf12 已提交
175 176 177 178
    fp32 model. It uses calibrate data to calculate the scale factor of 
    quantized variables, and inserts fake quant/dequant op to obtain the 
    quantized model.

F
ftian 已提交
179
    Args:
S
slf12 已提交
180 181
        executor(fluid.Executor): The executor to load, run and save the 
            quantized model.
S
slf12 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        model_dir(str): The path of fp32 model that will be quantized, and 
            the model and params that saved by fluid.io.save_inference_model 
            are under the path.
        quantize_model_path(str): The path to save quantized model using api
            fluid.io.save_inference_model.
        sample_generator(Python Generator): The sample generator provides 
            calibrate data for DataLoader, and it only returns a sample every time.
        model_filename(str, optional): The name of model file to load the inference 
                program. If parameters were saved in separate files, 
                set it as 'None'. Default is 'None'.
        params_filename(str, optional): The name of params file to load all parameters.
                When all parameters were saved in a single file, set it 
                as filename. If parameters were saved in separate files, 
                set it as 'None'. Default is 'None'.
        batch_size(int, optional): The batch size of DataLoader, default is 16.
S
slf12 已提交
197
        batch_nums(int, optional): If set batch_nums, the number of calibrate 
S
slf12 已提交
198 199 200 201
                        data is 'batch_size*batch_nums'. If batch_nums is None, use all data
                        generated by sample_generator  as calibrate data.
        scope(fluid.Scope, optional): The scope to run program, use it to load 
                        and save variables. If scope is None, will use fluid.global_scope().
S
slf12 已提交
202 203
        algo(str, optional): If algo=KL, use KL-divergenc method to 
                        get the more precise scale factor. If algo='direct', use 
S
slf12 已提交
204 205
                        abs_max method to get the scale factor. Default is 'KL'.
        quantizable_op_type(list[str], optional): The list of op types
S
slf12 已提交
206
                        that will be quantized. Default is ["conv2d", "depthwise_conv2d", 
S
slf12 已提交
207 208 209
                        "mul"].
    Returns:
        None
F
ftian 已提交
210
    """
S
slf12 已提交
211
    post_training_quantization = PostTrainingQuantization(
S
slf12 已提交
212 213 214 215 216 217 218 219 220 221 222
        executor=executor,
        sample_generator=sample_generator,
        model_dir=model_dir,
        model_filename=model_filename,
        params_filename=params_filename,
        batch_size=batch_size,
        batch_nums=batch_nums,
        scope=scope,
        algo=algo,
        quantizable_op_type=quantizable_op_type,
        is_full_quantize=False)
S
slf12 已提交
223 224
    post_training_quantization.quantize()
    post_training_quantization.save_quantized_model(quantize_model_path)
F
ftian 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261


def convert(program, scope, place, config, save_int8=False):
    """
    add quantization ops in program. the program returned is not trainable.
    Args:
        program(fluid.Program): program
        scope(fluid.Scope): the scope to store var, when is None will use fluid.global_scope()
        place(fluid.CPUPlace or fluid.CUDAPlace): place
        config(dict): configs for quantization, default values are in quant_config_default dict.
        save_int8: is export int8 freezed program.
    Return:
        fluid.Program: freezed program which can be used for inference.
                       parameters is float32 type, but it's value in int8 range.
        fluid.Program: freezed int8 program which can be used for inference.
                       if save_int8 is False, this value is None.
    """

    test_graph = IrGraph(core.Graph(program.desc), for_test=True)

    # Freeze the graph after training by adjusting the quantize
    # operators' order for the inference.
    freeze_pass = QuantizationFreezePass(
        scope=scope,
        place=place,
        weight_quantize_type=config['weight_quantize_type'])
    freeze_pass.apply(test_graph)
    freezed_program = test_graph.to_program()

    if save_int8:
        convert_int8_pass = ConvertToInt8Pass(
            scope=fluid.global_scope(), place=place)
        convert_int8_pass.apply(test_graph)
        freezed_program_int8 = test_graph.to_program()
        return freezed_program, freezed_program_int8
    else:
        return freezed_program