sa_controller.py 6.3 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The controller used to search hyperparameters or neural architecture"""

C
ceci3 已提交
16
import os
C
ceci3 已提交
17
import sys
W
wanghaoshuang 已提交
18 19 20 21
import copy
import math
import logging
import numpy as np
C
ceci3 已提交
22
import json
W
wanghaoshuang 已提交
23
from .controller import EvolutionaryController
C
ceci3 已提交
24
from .log_helper import get_logger
W
wanghaoshuang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37

__all__ = ["SAController"]

_logger = get_logger(__name__, level=logging.INFO)


class SAController(EvolutionaryController):
    """Simulated annealing controller."""

    def __init__(self,
                 range_table=None,
                 reduce_rate=0.85,
                 init_temperature=1024,
C
ceci3 已提交
38
                 max_try_times=300,
W
wanghaoshuang 已提交
39
                 init_tokens=None,
C
ceci3 已提交
40 41 42 43 44
                 reward=-1,
                 max_reward=-1,
                 iters=0,
                 best_tokens=None,
                 constrain_func=None,
C
ceci3 已提交
45 46
                 checkpoints=None,
                 searched=None):
W
wanghaoshuang 已提交
47 48 49 50 51
        """Initialize.
        Args:
            range_table(list<int>): Range table.
            reduce_rate(float): The decay rate of temperature.
            init_temperature(float): Init temperature.
C
ceci3 已提交
52
            max_try_times(int): max try times before get legal tokens. Default: 300.
C
update  
ceci3 已提交
53 54 55 56 57
            init_tokens(list<int>): The initial tokens. Default: None.
            reward(float): The reward of current tokens. Default: -1.
            max_reward(float): The max reward in the search of sanas, in general, best tokens get max reward. Default: -1.
            iters(int): The iteration of sa controller. Default: 0.
            best_tokens(list<int>): The best tokens in the search of sanas, in general, best tokens get max reward. Default: None.
W
wanghaoshuang 已提交
58
            constrain_func(function): The callback function used to check whether the tokens meet constraint. None means there is no constraint. Default: None.
C
ceci3 已提交
59
            checkpoints(str): if checkpoint is None, donnot save checkpoints, else save scene to checkpoints file.
C
ceci3 已提交
60
            searched(dict<list, float>): remember tokens which are searched.
W
wanghaoshuang 已提交
61 62 63 64 65 66 67
        """
        super(SAController, self).__init__()
        self._range_table = range_table
        assert isinstance(self._range_table, tuple) and (
            len(self._range_table) == 2)
        self._reduce_rate = reduce_rate
        self._init_temperature = init_temperature
W
wanghaoshuang 已提交
68
        self._max_try_times = max_try_times
C
ceci3 已提交
69
        self._reward = reward
W
wanghaoshuang 已提交
70 71
        self._tokens = init_tokens
        self._constrain_func = constrain_func
C
ceci3 已提交
72 73 74 75
        self._max_reward = max_reward
        self._best_tokens = best_tokens
        self._iter = iters
        self._checkpoints = checkpoints
C
ceci3 已提交
76
        self._searched = searched if searched != None else dict()
W
wanghaoshuang 已提交
77 78 79 80 81 82 83 84

    def __getstate__(self):
        d = {}
        for key in self.__dict__:
            if key != "_constrain_func":
                d[key] = self.__dict__[key]
        return d

C
ceci3 已提交
85 86 87 88 89 90 91 92 93 94 95 96
    @property
    def best_tokens(self):
        return self._best_tokens

    @property
    def max_reward(self):
        return self._max_reward

    @property
    def current_tokens(self):
        return self._tokens

W
wanghaoshuang 已提交
97
    def update(self, tokens, reward, iter):
W
wanghaoshuang 已提交
98 99 100 101 102 103
        """
        Update the controller according to latest tokens and reward.
        Args:
            tokens(list<int>): The tokens generated in last step.
            reward(float): The reward of tokens.
        """
W
wanghaoshuang 已提交
104
        iter = int(iter)
W
wanghaoshuang 已提交
105 106
        if iter > self._iter:
            self._iter = iter
C
ceci3 已提交
107
        self._searched[str(tokens)] = reward
W
wanghaoshuang 已提交
108
        temperature = self._init_temperature * self._reduce_rate**self._iter
W
wanghaoshuang 已提交
109 110 111 112 113 114 115 116
        if (reward > self._reward) or (np.random.random() <= math.exp(
            (reward - self._reward) / temperature)):
            self._reward = reward
            self._tokens = tokens
        if reward > self._max_reward:
            self._max_reward = reward
            self._best_tokens = tokens
        _logger.info(
C
ceci3 已提交
117
            "Controller - iter: {}; best_reward: {}, best tokens: {}, current_reward: {}; current tokens: {}".
C
ceci3 已提交
118 119
            format(self._iter, self._max_reward, self._best_tokens, reward,
                   tokens))
C
ceci3 已提交
120 121 122

        if self._checkpoints != None:
            self._save_checkpoint(self._checkpoints)
W
wanghaoshuang 已提交
123 124 125 126 127 128 129 130 131

    def next_tokens(self, control_token=None):
        """
        Get next tokens.
        """
        if control_token:
            tokens = control_token[:]
        else:
            tokens = self._tokens
C
ceci3 已提交
132 133 134 135 136 137 138 139
        for it in range(self._max_try_times):
            new_tokens = tokens[:]
            index = int(len(self._range_table[0]) * np.random.random())
            new_tokens[index] = np.random.randint(self._range_table[0][index],
                                                  self._range_table[1][index])
            _logger.debug("change index[{}] from {} to {}".format(
                index, tokens[index], new_tokens[index]))

C
ceci3 已提交
140
            if str(new_tokens) in self._searched.keys():
C
ceci3 已提交
141 142 143
                _logger.debug('get next tokens including searched tokens: {}'.
                              format(new_tokens))
                continue
W
wanghaoshuang 已提交
144
            else:
C
ceci3 已提交
145
                self._searched[str(new_tokens)] = -1
W
wanghaoshuang 已提交
146
                break
C
ceci3 已提交
147 148 149 150 151 152 153 154 155 156

        if it == self._max_try_times - 1:
            _logger.info(
                "cannot get a effective search space which is not searched in max try times!!!"
            )
            sys.exit()

        if self._constrain_func is None or self._max_try_times is None:
            return new_tokens

W
wanghaoshuang 已提交
157
        return new_tokens
C
ceci3 已提交
158

C
fix bug  
ceci3 已提交
159
    def _save_checkpoint(self, output_dir):
C
ceci3 已提交
160 161 162
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        file_path = os.path.join(output_dir, 'sanas.checkpoints')
C
ceci3 已提交
163
        scene = dict()
C
fix bug  
ceci3 已提交
164
        for key in self.__dict__:
C
ceci3 已提交
165 166 167
            if key in ['_checkpoints']:
                continue
            scene[key] = self.__dict__[key]
C
fix bug  
ceci3 已提交
168 169
        with open(file_path, 'w') as f:
            json.dump(scene, f)