lstm_controller.py 11.8 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import logging
import numpy as np
import paddle.fluid as fluid
from paddle.fluid import ParamAttr
from paddle.fluid.layers import RNNCell, LSTMCell, rnn
from paddle.fluid.contrib.layers import basic_lstm
from ...controller import RLBaseController
from ...log_helper import get_logger
from ..utils import RLCONTROLLER

_logger = get_logger(__name__, level=logging.INFO)

uniform_initializer = lambda x: fluid.initializer.UniformInitializer(low=-x, high=x)


class lstm_cell(RNNCell):
    def __init__(self, num_layers, hidden_size):
        self.num_layers = num_layers
        self.hidden_size = hidden_size
        self.lstm_cells = []

        param_attr = ParamAttr(initializer=uniform_initializer(
            1.0 / math.sqrt(hidden_size)))
        bias_attr = ParamAttr(initializer=uniform_initializer(
            1.0 / math.sqrt(hidden_size)))
        for i in range(num_layers):
            self.lstm_cells.append(
                LSTMCell(hidden_size, param_attr, bias_attr))

    def call(self, inputs, states):
        new_states = []
        for i in range(self.num_layers):
            out, new_state = self.lstm_cells[i](inputs, states[i])
            new_states.append(new_state)
        return out, new_states

    @property
    def state_shape(self):
        return [cell.state_shape for cell in self.lstm_cells]


@RLCONTROLLER.register
class LSTM(RLBaseController):
    def __init__(self, range_tables, use_gpu=False, **kwargs):
        self.use_gpu = use_gpu
        self.range_tables = range_tables
        self.lstm_num_layers = kwargs.get('lstm_num_layers') or 1
        self.hidden_size = kwargs.get('hidden_size') or 100
        self.temperature = kwargs.get('temperature') or None
65
        self.controller_lr = kwargs.get('controller_lr') or 1e-4
C
ceci3 已提交
66 67
        self.decay_steps = kwargs.get('controller_decay_steps') or None
        self.decay_rate = kwargs.get('controller_decay_rate') or None
C
ceci3 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        self.tanh_constant = kwargs.get('tanh_constant') or None
        self.decay = kwargs.get('decay') or 0.99
        self.weight_entropy = kwargs.get('weight_entropy') or None
        self.controller_batch_size = kwargs.get('controller_batch_size') or 1

        self.max_range_table = max(self.range_tables) + 1

        self._create_parameter()
        self._build_program()

        self.place = fluid.CUDAPlace(0) if self.use_gpu else fluid.CPUPlace()
        self.exe = fluid.Executor(self.place)
        self.exe.run(fluid.default_startup_program())

        self.param_dict = self.get_params(self.learn_program)

    def _lstm(self, inputs, hidden, cell, token_idx):
        cells = lstm_cell(self.lstm_num_layers, self.hidden_size)
        output, new_states = cells.call(inputs, states=([[hidden, cell]]))
        logits = fluid.layers.fc(new_states[0], self.range_tables[token_idx])

        if self.temperature is not None:
            logits = logits / self.temperature
        if self.tanh_constant is not None:
            logits = self.tanh_constant * fluid.layers.tanh(logits)

        return logits, output, new_states

    def _create_parameter(self):
        self.g_emb = fluid.layers.create_parameter(
            name='emb_g',
            shape=(self.controller_batch_size, self.hidden_size),
            dtype='float32',
            default_initializer=uniform_initializer(1.0))
        self.baseline = fluid.layers.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name='baseline')
        self.baseline.stop_gradient = True

    def _network(self, hidden, cell, init_actions=None, is_inference=False):
        actions = []
        entropies = []
        sample_log_probs = []

        with fluid.unique_name.guard('Controller'):
            self._create_parameter()
            inputs = self.g_emb

            for idx in range(len(self.range_tables)):
                logits, output, states = self._lstm(
                    inputs, hidden, cell, token_idx=idx)
                hidden, cell = np.squeeze(states)
                probs = fluid.layers.softmax(logits, axis=1)
                if is_inference:
                    action = fluid.layers.argmax(probs, axis=1)
                else:
                    if init_actions:
                        action = fluid.layers.slice(
                            init_actions,
                            axes=[1],
                            starts=[idx],
                            ends=[idx + 1])
133
                        action = fluid.layers.squeeze(action, axes=[1])
C
ceci3 已提交
134 135 136 137
                        action.stop_gradient = True
                    else:
                        action = fluid.layers.sampling_id(probs)
                actions.append(action)
138 139 140 141 142
                log_prob = fluid.layers.softmax_with_cross_entropy(
                    logits,
                    fluid.layers.reshape(
                        action, shape=[fluid.layers.shape(action), 1]),
                    axis=1)
C
ceci3 已提交
143 144 145 146 147 148 149
                sample_log_probs.append(log_prob)

                entropy = log_prob * fluid.layers.exp(-1 * log_prob)
                entropy.stop_gradient = True
                entropies.append(entropy)

                action_emb = fluid.layers.cast(action, dtype=np.int64)
150 151 152 153 154
                inputs = fluid.embedding(
                    action_emb,
                    size=(self.max_range_table, self.hidden_size),
                    param_attr=fluid.ParamAttr(
                        name='emb_w', initializer=uniform_initializer(1.0)))
C
ceci3 已提交
155

156 157
            self.sample_log_probs = fluid.layers.concat(
                sample_log_probs, axis=0)
C
ceci3 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

            entropies = fluid.layers.stack(entropies)
            self.sample_entropies = fluid.layers.reduce_sum(entropies)

        return actions

    def _build_program(self, is_inference=False):
        self.pred_program = fluid.Program()
        self.learn_program = fluid.Program()
        with fluid.program_guard(self.pred_program):
            self.g_emb = fluid.layers.create_parameter(
                name='emb_g',
                shape=(self.controller_batch_size, self.hidden_size),
                dtype='float32',
                default_initializer=uniform_initializer(1.0))

            fluid.layers.assign(
                fluid.layers.uniform_random(shape=self.g_emb.shape),
                self.g_emb)
            hidden = fluid.data(name='hidden', shape=[None, self.hidden_size])
            cell = fluid.data(name='cell', shape=[None, self.hidden_size])
            self.tokens = self._network(
                hidden, cell, is_inference=is_inference)

        with fluid.program_guard(self.learn_program):
            hidden = fluid.data(name='hidden', shape=[None, self.hidden_size])
            cell = fluid.data(name='cell', shape=[None, self.hidden_size])
            init_actions = fluid.data(
                name='init_actions',
                shape=[None, len(self.range_tables)],
                dtype='int64')
            self._network(hidden, cell, init_actions=init_actions)

            rewards = fluid.data(name='rewards', shape=[None])
            self.rewards = fluid.layers.reduce_mean(rewards)

            if self.weight_entropy is not None:
                self.rewards += self.weight_entropy * self.sample_entropies

            self.sample_log_probs = fluid.layers.reduce_sum(
                self.sample_log_probs)

            fluid.layers.assign(self.baseline - (1.0 - self.decay) *
                                (self.baseline - self.rewards), self.baseline)
C
ceci3 已提交
202
            self.loss = self.sample_log_probs * (self.rewards - self.baseline)
C
ceci3 已提交
203 204 205 206 207 208 209 210 211
            clip = fluid.clip.GradientClipByNorm(clip_norm=5.0)
            if self.decay_steps is not None:
                lr = fluid.layers.exponential_decay(
                    self.controller_lr,
                    decay_steps=self.decay_steps,
                    decay_rate=self.decay_rate)
            else:
                lr = self.controller_lr
            optimizer = fluid.optimizer.Adam(learning_rate=lr, grad_clip=clip)
C
ceci3 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
            optimizer.minimize(self.loss)

    def _create_input(self, is_test=True, actual_rewards=None):
        feed_dict = dict()
        np_init_hidden = np.zeros(
            (self.controller_batch_size, self.hidden_size)).astype('float32')
        np_init_cell = np.zeros(
            (self.controller_batch_size, self.hidden_size)).astype('float32')

        feed_dict["hidden"] = np_init_hidden
        feed_dict["cell"] = np_init_cell

        if is_test == False:
            if isinstance(actual_rewards, np.float32):
                assert actual_rewards != None, "if you want to update controller, you must inputs a reward"
                actual_rewards = np.expand_dims(actual_rewards, axis=0)
            elif isinstance(actual_rewards, np.float) or isinstance(
                    actual_rewards, np.float64):
                actual_rewards = np.float32(actual_rewards)
                assert actual_rewards != None, "if you want to update controller, you must inputs a reward"
                actual_rewards = np.expand_dims(actual_rewards, axis=0)
            else:
                assert actual_rewards.all(
                ) != None, "if you want to update controller, you must inputs a reward"
                actual_rewards = actual_rewards.astype(np.float32)

            feed_dict['rewards'] = actual_rewards
C
ceci3 已提交
239 240
            feed_dict['init_actions'] = np.array(self.init_tokens).astype(
                'int64')
C
ceci3 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

        return feed_dict

    def next_tokens(self, num_archs=1, params_dict=None, is_inference=False):
        """ sample next tokens according current parameter and inputs"""
        self.num_archs = num_archs

        self.set_params(self.pred_program, params_dict, self.place)

        batch_tokens = []
        feed_dict = self._create_input()

        for _ in range(
                int(np.ceil(float(num_archs) / self.controller_batch_size))):
            if is_inference:
                self._build_program(is_inference=True)

            actions = self.exe.run(self.pred_program,
                                   feed=feed_dict,
                                   fetch_list=self.tokens)

            for idx in range(self.controller_batch_size):
                each_token = {}
                for i, action in enumerate(actions):
                    token = action[idx]
                    if idx in each_token:
                        each_token[idx].append(int(token))
                    else:
                        each_token[idx] = [int(token)]
                batch_tokens.append(each_token[idx])

        self.init_tokens = batch_tokens
        mod_token = (self.controller_batch_size -
                     (num_archs % self.controller_batch_size)
                     ) % self.controller_batch_size
        if mod_token != 0:
            return batch_tokens[:-mod_token]
        else:
            return batch_tokens

    def update(self, rewards, params_dict=None):
        """train controller according reward"""
        self.set_params(self.learn_program, params_dict, self.place)

        feed_dict = self._create_input(is_test=False, actual_rewards=rewards)

        loss = self.exe.run(self.learn_program,
                            feed=feed_dict,
                            fetch_list=[self.loss])
        _logger.info("Controller: current reward is {}, loss is {}".format(
            rewards, loss))
        params_dict = self.get_params(self.learn_program)
        return params_dict