rl_nas_mobilenetv2.py 8.0 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
import sys
sys.path.append('..')
import numpy as np
import argparse
import ast
import time
import argparse
import ast
import logging
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddleslim.nas import RLNAS
from paddleslim.common import get_logger
from optimizer import create_optimizer
import imagenet_reader

_logger = get_logger(__name__, level=logging.INFO)


def create_data_loader(image_shape):
    data_shape = [None] + image_shape
    data = fluid.data(name='data', shape=data_shape, dtype='float32')
    label = fluid.data(name='label', shape=[None, 1], dtype='int64')
    data_loader = fluid.io.DataLoader.from_generator(
        feed_list=[data, label],
        capacity=1024,
        use_double_buffer=True,
        iterable=True)
    return data_loader, data, label


def build_program(main_program,
                  startup_program,
                  image_shape,
                  archs,
                  args,
                  is_test=False):
    with fluid.program_guard(main_program, startup_program):
        with fluid.unique_name.guard():
            data_loader, data, label = create_data_loader(image_shape)
            output = archs(data)
            output = fluid.layers.fc(input=output, size=args.class_dim)

            softmax_out = fluid.layers.softmax(input=output, use_cudnn=False)
            cost = fluid.layers.cross_entropy(input=softmax_out, label=label)
            avg_cost = fluid.layers.mean(cost)
            acc_top1 = fluid.layers.accuracy(
                input=softmax_out, label=label, k=1)
            acc_top5 = fluid.layers.accuracy(
                input=softmax_out, label=label, k=5)

            if is_test == False:
                optimizer = create_optimizer(args)
                optimizer.minimize(avg_cost)
    return data_loader, avg_cost, acc_top1, acc_top5


def search_mobilenetv2(config, args, image_size, is_server=True):
    if is_server:
        ### start a server and a client
        rl_nas = RLNAS(
            key='lstm',
            configs=config,
            is_sync=False,
            server_addr=(args.server_address, args.port),
            controller_batch_size=1,
C
ceci3 已提交
68 69
            controller_decay_steps=1000,
            controller_decay_rate=0.8,
C
ceci3 已提交
70
            lstm_num_layers=1,
C
ceci3 已提交
71
            hidden_size=10,
C
ceci3 已提交
72 73 74 75 76 77 78 79 80 81 82
            temperature=1.0)
    else:
        ### start a client
        rl_nas = RLNAS(
            key='lstm',
            configs=config,
            is_sync=False,
            server_addr=(args.server_address, args.port),
            lstm_num_layers=1,
            hidden_size=10,
            temperature=1.0,
C
ceci3 已提交
83 84 85
            controller_batch_size=1,
            controller_decay_steps=1000,
            controller_decay_rate=0.8,
C
ceci3 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
            is_server=False)

    image_shape = [3, image_size, image_size]
    for step in range(args.search_steps):
        archs = rl_nas.next_archs(1)[0][0]

        train_program = fluid.Program()
        test_program = fluid.Program()
        startup_program = fluid.Program()
        train_loader, avg_cost, acc_top1, acc_top5 = build_program(
            train_program, startup_program, image_shape, archs, args)

        test_loader, test_avg_cost, test_acc_top1, test_acc_top5 = build_program(
            test_program,
            startup_program,
            image_shape,
            archs,
            args,
            is_test=True)
        test_program = test_program.clone(for_test=True)

        place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_program)

        if args.data == 'cifar10':
            train_reader = paddle.batch(
                paddle.reader.shuffle(
                    paddle.dataset.cifar.train10(cycle=False), buf_size=1024),
                batch_size=args.batch_size,
                drop_last=True)

            test_reader = paddle.batch(
                paddle.dataset.cifar.test10(cycle=False),
                batch_size=args.batch_size,
                drop_last=False)
        elif args.data == 'imagenet':
            train_reader = paddle.batch(
                imagenet_reader.train(),
                batch_size=args.batch_size,
                drop_last=True)
            test_reader = paddle.batch(
                imagenet_reader.val(),
                batch_size=args.batch_size,
                drop_last=False)

        train_loader.set_sample_list_generator(
            train_reader,
            places=fluid.cuda_places() if args.use_gpu else fluid.cpu_places())
        test_loader.set_sample_list_generator(test_reader, places=place)

        build_strategy = fluid.BuildStrategy()
        train_compiled_program = fluid.CompiledProgram(
            train_program).with_data_parallel(
                loss_name=avg_cost.name, build_strategy=build_strategy)
        for epoch_id in range(args.retain_epoch):
            for batch_id, data in enumerate(train_loader()):
                fetches = [avg_cost.name]
                s_time = time.time()
                outs = exe.run(train_compiled_program,
                               feed=data,
                               fetch_list=fetches)[0]
                batch_time = time.time() - s_time
                if batch_id % 10 == 0:
                    _logger.info(
                        'TRAIN: steps: {}, epoch: {}, batch: {}, cost: {}, batch_time: {}ms'.
                        format(step, epoch_id, batch_id, outs[0], batch_time))

        reward = []
        for batch_id, data in enumerate(test_loader()):
            test_fetches = [
                test_avg_cost.name, test_acc_top1.name, test_acc_top5.name
            ]
            batch_reward = exe.run(test_program,
                                   feed=data,
                                   fetch_list=test_fetches)
            reward_avg = np.mean(np.array(batch_reward), axis=1)
            reward.append(reward_avg)

            _logger.info(
                'TEST: step: {}, batch: {}, avg_cost: {}, acc_top1: {}, acc_top5: {}'.
                format(step, batch_id, batch_reward[0], batch_reward[1],
                       batch_reward[2]))

        finally_reward = np.mean(np.array(reward), axis=0)
        _logger.info(
            'FINAL TEST: avg_cost: {}, acc_top1: {}, acc_top5: {}'.format(
                finally_reward[0], finally_reward[1], finally_reward[2]))

        rl_nas.reward(np.float32(finally_reward[1]))


if __name__ == '__main__':

    parser = argparse.ArgumentParser(
        description='RL NAS MobileNetV2 cifar10 argparase')
    parser.add_argument(
        '--use_gpu',
        type=ast.literal_eval,
        default=True,
        help='Whether to use GPU in train/test model.')
    parser.add_argument(
        '--batch_size', type=int, default=256, help='batch size.')
    parser.add_argument(
C
ceci3 已提交
190
        '--class_dim', type=int, default=10, help='classify number.')
C
ceci3 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    parser.add_argument(
        '--data',
        type=str,
        default='cifar10',
        choices=['cifar10', 'imagenet'],
        help='server address.')
    parser.add_argument(
        '--is_server',
        type=ast.literal_eval,
        default=True,
        help='Whether to start a server.')
    parser.add_argument(
        '--search_steps',
        type=int,
        default=100,
        help='controller server number.')
    parser.add_argument(
        '--server_address', type=str, default="", help='server ip.')
    parser.add_argument('--port', type=int, default=8881, help='server port')
    parser.add_argument(
        '--retain_epoch', type=int, default=5, help='epoch for each token.')
    parser.add_argument('--lr', type=float, default=0.1, help='learning rate.')
    args = parser.parse_args()
    print(args)

    if args.data == 'cifar10':
        image_size = 32
        block_num = 3
    elif args.data == 'imagenet':
        image_size = 224
        block_num = 6
    else:
        raise NotImplementedError(
            'data must in [cifar10, imagenet], but received: {}'.format(
                args.data))

    config = [('MobileNetV2Space')]

    search_mobilenetv2(config, args, image_size, is_server=args.is_server)