prune_api.rst 16.5 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
卷积层通道剪裁
================

Pruner
----------

.. py:class:: paddleslim.prune.Pruner(criterion="l1_norm")

`源代码 <https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/pruner.py#L28>`_

对卷积网络的通道进行一次剪裁。剪裁一个卷积层的通道,是指剪裁该卷积层输出的通道。卷积层的权重形状为 ``[output_channel, input_channel, kernel_size, kernel_size]`` ,通过剪裁该权重的第一纬度达到剪裁输出通道数的目的。

**参数:**

Y
yukavio 已提交
15
- **criterion** - 评估一个卷积层内通道重要性所参考的指标。目前支持 ``l1_norm`` , ``bn_scale`` , ``geometry_median``  。默认为 ``l1_norm`` 。若该参数设为 ``bn_scale`` , 则表示剪枝算法将根据卷积层后连接的BatchNorm层的Scale参数的绝对值大小作为评估卷积层内通道重要性所参考的指标。若参数设为 ``geometry_median``, 则表示剪枝算法将基于卷积层内通道的几何中心作为评估卷积层内通道重要性参考指标。 在初始化Pruner()类实例时,若没有传入该参数,则表示Pruner()使用criterion默认参数值 ``l1_norm`` ;可以显示地传入criterion的值以改变剪枝算法的剪枝策略。
16
- **idx_selector** - 基于卷积层内通道重要性分数,指示选择裁剪的卷积层内通道索引的策略。目前支持 ``default_idx_selector`` 和 ``optimal_threshold`` 两种选择策略。默认为 ``default_idx_selector`` 。 ``default_idx_selector`` 策略表示根据卷积层内通道的重要性分数进行选择要被裁剪的通道。 ``optimal_threshold`` 策略和 ``bn_scale`` 准则配合使用,即将 ``criterion`` 设置为 ``bn_scale`` , 并将该参数设置为 ``optimal_threshold``,  表示根据卷积层后链接的BatchNorm层的Scale参数计算出要裁剪的最优裁剪阈值,并根据该阈值进行通道裁剪。在初始话Pruner()实例时,若没有传入该参数,则表示Pruner()使用idx_selector默认参数 ``default_idx_selector`` 。
W
whs 已提交
17 18 19 20 21 22 23 24

**返回:** 一个Pruner类的实例

**示例代码:**

.. code-block:: python

   from paddleslim.prune import Pruner
25
   pruner = Pruner()       
W
whs 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
..
 
   .. py:method:: paddleslim.prune.Pruner.prune(program, scope, params, ratios, place=None, lazy=False, only_graph=False, param_backup=False, param_shape_backup=False)

   对目标网络的一组卷积层的权重进行裁剪。
   
   **参数:**
   
   - **program(paddle.fluid.Program)** - 要裁剪的目标网络。更多关于Program的介绍请参考:`Program概念介绍 <https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/fluid_cn/Program_cn.html#program>`_。
   
   - **scope(paddle.fluid.Scope)** - 要裁剪的权重所在的 ``scope`` ,Paddle中用 ``scope`` 实例存放模型参数和运行时变量的值。Scope中的参数值会被 ``inplace`` 的裁剪。更多介绍请参考: `Scope概念介绍 <>`_
   
   - **params(list<str>)** - 需要被裁剪的卷积层的参数的名称列表。可以通过以下方式查看模型中所有参数的名称:
   
   .. code-block:: python
   
      for block in program.blocks:
          for param in block.all_parameters():
              print("param: {}; shape: {}".format(param.name, param.shape))
   
   - **ratios(list<float>)** - 用于裁剪 ``params`` 的剪切率,类型为列表。该列表长度必须与 ``params`` 的长度一致。
   
   - **place(paddle.fluid.Place)** - 待裁剪参数所在的设备位置,可以是 ``CUDAPlace`` 或 ``CPUPlace`` 。[Place概念介绍]()
   
   - **lazy(bool)** - ``lazy`` 为True时,通过将指定通道的参数置零达到裁剪的目的,参数的 ``shape保持不变`` ; ``lazy`` 为False时,直接将要裁的通道的参数删除,参数的 ``shape`` 会发生变化。
   
   - **only_graph(bool)** - 是否只裁剪网络结构。在Paddle中,Program定义了网络结构,Scope存储参数的数值。一个Scope实例可以被多个Program使用,比如定义了训练网络的Program和定义了测试网络的Program是使用同一个Scope实例的。 ``only_graph`` 为True时,只对Program中定义的卷积的通道进行剪裁; ``only_graph`` 为false时,Scope中卷积参数的数值也会被剪裁。默认为False。
   
   - **param_backup(bool)** - 是否返回对参数值的备份。默认为False。
   
   - **param_shape_backup(bool)** - 是否返回对参数 ``shape`` 的备份。默认为False。
   
   **返回:**
   
   - **pruned_program(paddle.fluid.Program)** - 被裁剪后的Program。
   
   - **param_backup(dict)** - 对参数数值的备份,用于恢复Scope中的参数数值。
   
   - **param_shape_backup(dict)** - 对参数形状的备份。
   
   **示例:**
   
   点击 `AIStudio <https://aistudio.baidu.com/aistudio/projectDetail/200786>`_ 执行以下示例代码。

   .. code-block:: python
   
      import paddle.fluid as fluid
      from paddle.fluid.param_attr import ParamAttr
      from paddleslim.prune import Pruner
      
      def conv_bn_layer(input,
                        num_filters,
                        filter_size,
                        name,
                        stride=1,
                        groups=1,
                        act=None):
          conv = fluid.layers.conv2d(
              input=input,
              num_filters=num_filters,
              filter_size=filter_size,
              stride=stride,
              padding=(filter_size - 1) // 2,
              groups=groups,
              act=None,
              param_attr=ParamAttr(name=name + "_weights"),
              bias_attr=False,
              name=name + "_out")
          bn_name = name + "_bn"
          return fluid.layers.batch_norm(
              input=conv,
              act=act,
              name=bn_name + '_output',
              param_attr=ParamAttr(name=bn_name + '_scale'),
              bias_attr=ParamAttr(bn_name + '_offset'),
              moving_mean_name=bn_name + '_mean',
              moving_variance_name=bn_name + '_variance', )
      
      main_program = fluid.Program()
      startup_program = fluid.Program()
      #   X       X              O       X              O
      # conv1-->conv2-->sum1-->conv3-->conv4-->sum2-->conv5-->conv6
      #     |            ^ |                    ^
      #     |____________| |____________________|
      #
      # X: prune output channels
      # O: prune input channels
      with fluid.program_guard(main_program, startup_program):
          input = fluid.data(name="image", shape=[None, 3, 16, 16])
          conv1 = conv_bn_layer(input, 8, 3, "conv1")
          conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
          sum1 = conv1 + conv2
          conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
          conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
          sum2 = conv4 + sum1
          conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
          conv6 = conv_bn_layer(conv5, 8, 3, "conv6")
      
      place = fluid.CPUPlace()
      exe = fluid.Executor(place)
      scope = fluid.Scope()
      exe.run(startup_program, scope=scope)
128
      # Initiallize Pruner() instance with default criterion and idx_selector
W
whs 已提交
129
      pruner = Pruner()
130 131 132 133 134 135 136 137
      # Set criterion
      # criterion = 'geometry_median'
      # pruner = Pruner(criterion=criterion)
      # Set criterion and idx_selector
      # criterion = 'bn_scale'
      # idx_selector = 'optimal_threshold'
      # pruner = Pruner(criterion=criterion, idx_selector=idx_selector)
     
W
whs 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
      main_program, _, _ = pruner.prune(
          main_program,
          scope,
          params=["conv4_weights"],
          ratios=[0.5],
          place=place,
          lazy=False,
          only_graph=False,
          param_backup=False,
          param_shape_backup=False)
      
      for param in main_program.global_block().all_parameters():
          if "weights" in param.name:
              print("param name: {}; param shape: {}".format(param.name, param.shape))
      

sensitivity
--------------

.. py:function:: paddleslim.prune.sensitivity(program, place, param_names, eval_func, sensitivities_file=None, pruned_ratios=None)

`源代码 <https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/sensitive.py>`_

计算网络中每个卷积层的敏感度。每个卷积层的敏感度信息统计方法为:依次剪掉当前卷积层不同比例的输出通道数,在测试集上计算剪裁后的精度损失。得到敏感度信息后,可以通过观察或其它方式确定每层卷积的剪裁率。

**参数:**

- **program(paddle.fluid.Program)** - 待评估的目标网络。更多关于Program的介绍请参考:`Program概念介绍 <https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/fluid_cn/Program_cn.html#program>`_。

- **place(paddle.fluid.Place)** - 待分析的参数所在的设备位置,可以是 ``CUDAPlace`` 或 ``CPUPlace`` 。[Place概念介绍]()

- **param_names(list<str>)** - 待分析的卷积层的参数的名称列表。可以通过以下方式查看模型中所有参数的名称:

.. code-block:: python
   for block in program.blocks:
       for param in block.all_parameters():
           print("param: {}; shape: {}".format(param.name, param.shape))

- **eval_func(function)** - 用于评估裁剪后模型效果的回调函数。该回调函数接受被裁剪后的 ``program`` 为参数,返回一个表示当前program的精度,用以计算当前裁剪带来的精度损失。

- **sensitivities_file(str)** - 保存敏感度信息的本地文件系统的文件。在敏感度计算过程中,会持续将新计算出的敏感度信息追加到该文件中。重启任务后,文件中已有敏感度信息不会被重复计算。该文件可以用 ``pickle`` 加载。

- **pruned_ratios(list<float>)** - 计算卷积层敏感度信息时,依次剪掉的通道数比例。默认为 ``[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]`` 。

**返回:**

- **sensitivities(dict)** - 存放敏感度信息的dict,其格式为:

.. code-block:: python

  {"weight_0":
     {0.1: 0.22,
      0.2: 0.33
     },
   "weight_1":
     {0.1: 0.21,
      0.2: 0.4
     }
  }

其中, ``weight_0`` 是卷积层参数的名称, ``sensitivities['weight_0']`` 的 ``value`` 为剪裁比例, ``value`` 为精度损失的比例。

**示例:**

点击 `AIStudio <https://aistudio.baidu.com/aistudio/projectdetail/201401>`_ 运行以下示例代码。

.. code-block:: python

   import paddle
   import numpy as np
   import paddle.fluid as fluid
   from paddle.fluid.param_attr import ParamAttr
   from paddleslim.prune import sensitivity
   import paddle.dataset.mnist as reader
   
   def conv_bn_layer(input,
                     num_filters,
                     filter_size,
                     name,
                     stride=1,
                     groups=1,
                     act=None):
       conv = fluid.layers.conv2d(
           input=input,
           num_filters=num_filters,
           filter_size=filter_size,
           stride=stride,
           padding=(filter_size - 1) // 2,
           groups=groups,
           act=None,
           param_attr=ParamAttr(name=name + "_weights"),
           bias_attr=False,
           name=name + "_out")
       bn_name = name + "_bn"
       return fluid.layers.batch_norm(
           input=conv,
           act=act,
           name=bn_name + '_output',
           param_attr=ParamAttr(name=bn_name + '_scale'),
           bias_attr=ParamAttr(bn_name + '_offset'),
           moving_mean_name=bn_name + '_mean',
           moving_variance_name=bn_name + '_variance', )
   
   main_program = fluid.Program()
   startup_program = fluid.Program()
   #   X       X              O       X              O
   # conv1-->conv2-->sum1-->conv3-->conv4-->sum2-->conv5-->conv6
   #     |            ^ |                    ^
   #     |____________| |____________________|
   #
   # X: prune output channels
   # O: prune input channels
   image_shape = [1,28,28]
   with fluid.program_guard(main_program, startup_program):
       image = fluid.data(name='image', shape=[None]+image_shape, dtype='float32')
       label = fluid.data(name='label', shape=[None, 1], dtype='int64')  
       conv1 = conv_bn_layer(image, 8, 3, "conv1")
       conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
       sum1 = conv1 + conv2
       conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
       conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
       sum2 = conv4 + sum1
       conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
       conv6 = conv_bn_layer(conv5, 8, 3, "conv6")
       out = fluid.layers.fc(conv6, size=10, act="softmax")
   #    cost = fluid.layers.cross_entropy(input=out, label=label)
   #    avg_cost = fluid.layers.mean(x=cost)
       acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
   #    acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
   
   
   place = fluid.CPUPlace()
   exe = fluid.Executor(place)
   exe.run(startup_program)
   
273
   val_reader = paddle.fluid.io.batch(reader.test(), batch_size=128)
W
whs 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
   val_feeder = feeder = fluid.DataFeeder(
           [image, label], place, program=main_program)
   
   def eval_func(program):
   
       acc_top1_ns = []
       for data in val_reader():
           acc_top1_n = exe.run(program,
                                feed=val_feeder.feed(data),
                                fetch_list=[acc_top1.name])
           acc_top1_ns.append(np.mean(acc_top1_n))
       return np.mean(acc_top1_ns)
   param_names = []
   for param in main_program.global_block().all_parameters():
       if "weights" in param.name:
           param_names.append(param.name)
   sensitivities = sensitivity(main_program,
                               place,
                               param_names,
                               eval_func,
                               sensitivities_file="./sensitive.data",
                               pruned_ratios=[0.1, 0.2, 0.3])
   print(sensitivities)
   

merge_sensitive
----------------

.. py:function:: paddleslim.prune.merge_sensitive(sensitivities)

`源代码 <https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/sensitive.py>`_

合并多个敏感度信息。

参数:

- **sensitivities(list<dict> | list<str>)** - 待合并的敏感度信息,可以是字典的列表,或者是存放敏感度信息的文件的路径列表。

返回:

- **sensitivities(dict)** - 合并后的敏感度信息。其格式为:

.. code-block:: bash

   {"weight_0":
      {0.1: 0.22,
       0.2: 0.33
      },
    "weight_1":
      {0.1: 0.21,
       0.2: 0.4
      }
   }
   

其中, ``weight_0`` 是卷积层参数的名称, ``sensitivities['weight_0']`` 的 ``value`` 为剪裁比例, ``value`` 为精度损失的比例。

示例:

.. code-block:: python

   from paddleslim.prune import merge_sensitive
   sen0 = {"weight_0":
      {0.1: 0.22,
       0.2: 0.33
      },
    "weight_1":
      {0.1: 0.21,
       0.2: 0.4
      }
   }
   sen1 = {"weight_0":
      {0.3: 0.41,
      },
    "weight_2":
      {0.1: 0.10,
       0.2: 0.35
      }
   }
   sensitivities = merge_sensitive([sen0, sen1])
   print(sensitivities)


load_sensitivities
---------------------

.. py:function:: paddleslim.prune.load_sensitivities(sensitivities_file)

`源代码 <https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/sensitive.py#L184>`_

从文件中加载敏感度信息。

参数:

- **sensitivities_file(str)** - 存放敏感度信息的本地文件.

返回:

- **sensitivities(dict)** - 敏感度信息。

示例:

.. code-block:: python

  import pickle
  from paddleslim.prune import load_sensitivities
  sen = {"weight_0":
     {0.1: 0.22,
      0.2: 0.33
     },
   "weight_1":
     {0.1: 0.21,
      0.2: 0.4
     }
  }
  sensitivities_file = "sensitive_api_demo.data"
390
  with open(sensitivities_file, 'wb') as f:
W
whs 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
      pickle.dump(sen, f)
  sensitivities = load_sensitivities(sensitivities_file)
  print(sensitivities)

get_ratios_by_loss
-------------------

.. py:function:: paddleslim.prune.get_ratios_by_loss(sensitivities, loss)

`源代码 <https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/sensitive.py>`_

根据敏感度和精度损失阈值计算出一组剪切率。对于参数 ``w`` , 其剪裁率为使精度损失低于 ``loss`` 的最大剪裁率。

**参数:**

- **sensitivities(dict)** - 敏感度信息。

- **loss** - 精度损失阈值。

**返回:**

- **ratios(dict)** - 一组剪切率。 ``key`` 是待剪裁参数的名称。 ``value`` 是对应参数的剪裁率。

**示例:**

.. code-block:: python
   
  from paddleslim.prune import get_ratios_by_loss
  sen = {"weight_0":
     {0.1: 0.22,
      0.2: 0.33
     },
   "weight_1":
     {0.1: 0.21,
      0.2: 0.4
     }
  }
  
  ratios = get_ratios_by_loss(sen, 0.3)
  print(ratios)