README.md 5.0 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# 目标检测模型自动压缩示例

目录:
- [1.简介](#1简介)
- [2.Benchmark](#2Benchmark)
- [3.开始自动压缩](#自动压缩流程)
  - [3.1 环境准备](#31-准备环境)
  - [3.2 准备数据集](#32-准备数据集)
  - [3.3 准备预测模型](#33-准备预测模型)
  - [3.4 测试模型精度](#34-测试模型精度)
  - [3.5 自动压缩并产出模型](#35-自动压缩并产出模型)
- [4.预测部署](#4预测部署)
- [5.FAQ](5FAQ)

## 1. 简介

飞桨模型转换工具[X2Paddle](https://github.com/PaddlePaddle/X2Paddle)支持将```Caffe/TensorFlow/ONNX/PyTorch```的模型一键转为飞桨(PaddlePaddle)的预测模型。借助X2Paddle的能力,各种框架的推理模型可以很方便的使用PaddleSlim的自动化压缩功能。

本示例将以[ultralytics/yolov5](https://github.com/ultralytics/yolov5)目标检测模型为例,将PyTorch框架模型转换为Paddle框架模型,再使用ACT自动压缩功能进行自动压缩。本示例使用的自动压缩策略为量化训练。

## 2.Benchmark

| 模型  |  策略  | 输入尺寸 | mAP<sup>val<br>0.5:0.95 | 预测时延<sup><small>FP32</small><sup><br><sup>(ms) |预测时延<sup><small>FP16</small><sup><br><sup>(ms) | 预测时延<sup><small>INT8</small><sup><br><sup>(ms) |  配置文件 | Inference模型  |
| :-------- |:-------- |:--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: | :-----------------------------: |
| YOLOv5s |  Base模型 | 640*640  |  37.4   |   7.8ms  |   4.3ms   |  -  |  - | [Model](https://bj.bcebos.com/v1/paddle-slim-models/detection/yolov5s_infer.tar) |
G
Guanghua Yu 已提交
26
| YOLOv5s |  量化+蒸馏 | 640*640  |  36.5   |   - |   -   |  3.4ms  |  [config](./configs/yolov5s_qat_dis.yaml) | [Model](https://bj.bcebos.com/v1/paddle-slim-models/act/yolov5s_quant.tar) |
G
Guanghua Yu 已提交
27 28 29

说明:
- mAP的指标均在COCO val2017数据集中评测得到。
G
Guanghua Yu 已提交
30
- YOLOv5s模型在Tesla T4的GPU环境下测试,并且开启TensorRT,测试脚本是[benchmark demo](./paddle_trt_infer.py)
G
Guanghua Yu 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

## 3. 自动压缩流程

#### 3.1 准备环境
- PaddlePaddle >= 2.3 (可从[Paddle官网](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html)下载安装)
- PaddleSlim develop版本
- PaddleDet >= 2.4
- [X2Paddle](https://github.com/PaddlePaddle/X2Paddle) >= 1.3.6
- opencv-python

(1)安装paddlepaddle:
```shell
# CPU
pip install paddlepaddle
# GPU
pip install paddlepaddle-gpu
```

(2)安装paddleslim:
```shell
https://github.com/PaddlePaddle/PaddleSlim.git
python setup.py install
```

(3)安装paddledet:
```shell
pip install paddledet
```

注:安装PaddleDet的目的是为了直接使用PaddleDetection中的Dataloader组件。

(4)安装X2Paddle的1.3.6以上版本:
```shell
pip install x2paddle
```

#### 3.2 准备数据集

本案例默认以COCO数据进行自动压缩实验,并且依赖PaddleDetection中数据读取模块,如果自定义COCO数据,或者其他格式数据,请参考[PaddleDetection数据准备文档](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/docs/tutorials/PrepareDataSet.md) 来准备数据。


#### 3.3 准备预测模型

(1)准备ONNX模型:

可通过[ultralytics/yolov5](https://github.com/ultralytics/yolov5) 官方的[导出教程](https://github.com/ultralytics/yolov5/issues/251)来准备ONNX模型。
```
python export.py --weights yolov5s.pt --include onnx
```

(2) 转换模型:
```
x2paddle --framework=onnx --model=yolov5s.onnx --save_dir=pd_model
cp -r pd_model/inference_model/ yolov5_inference_model
```
即可得到YOLOv5s模型的预测模型(`model.pdmodel``model.pdiparams`)。如想快速体验,可直接下载上方表格中YOLOv5s的[Base预测模型](https://bj.bcebos.com/v1/paddle-slim-models/detection/yolov5s_infer.tar)


预测模型的格式为:`model.pdmodel``model.pdiparams`两个,带`pdmodel`的是模型文件,带`pdiparams`后缀的是权重文件。


#### 3.4 自动压缩并产出模型

蒸馏量化自动压缩示例通过run.py脚本启动,会使用接口```paddleslim.auto_compression.AutoCompression```对模型进行自动压缩。配置config文件中模型路径、蒸馏、量化、和训练等部分的参数,配置完成后便可对模型进行量化和蒸馏。具体运行命令为:
```
# 单卡
export CUDA_VISIBLE_DEVICES=0
# 多卡
# export CUDA_VISIBLE_DEVICES=0,1,2,3
python run.py --config_path=./configs/yolov5s_qat_dis.yaml --save_dir='./output/'
```

#### 3.5 测试模型精度

使用eval.py脚本得到模型的mAP:
```
export CUDA_VISIBLE_DEVICES=0
python eval.py --config_path=./configs/yolov5s_qat_dis.yaml
```

**注意**:要测试的模型路径需要在配置文件中`model_dir`字段下进行修改指定。


## 4.预测部署

- Paddle-TensorRT部署:
使用[paddle_trt_infer.py](./paddle_trt_infer.py)进行部署:
```shell
python paddle_trt_infer.py --model_path=output --image_file=images/000000570688.jpg --benchmark=True --run_mode=trt_int8
```

## 5.FAQ