mse.py 3.8 KB
Newer Older
C
Chang Xu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
from .uniform import UniformObserver
from paddle.quantization.factory import ObserverFactory


class MSEObserver(ObserverFactory):
    r"""
    It collects maximum absolute values of target tensor.
    Args:
        bit_length(int, optional): Number of bits to represent an quantized integer in binary.
        dtype(str, optional): The data type of input tensor.
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
    Examples:
       .. code-block:: python
            from paddle.quantization import QuantConfig
            from paddle.quantization.quanters import FakeQuanterWithAbsMaxObserver
            quanter = FakeQuanterWithAbsMaxObserver(moving_rate=0.99)
            q_config = QuantConfig(activation=quanter, weight=quanter)
    """

    def __init__(self, quant_bits=8):
        super(MSEObserver, self).__init__(quant_bits=quant_bits)

    def _get_class(self):
        return MSEObserverLayer


class MSEObserverLayer(UniformObserver):
    def __init__(self, layer, quant_bits=8):
        super(MSEObserverLayer, self).__init__(quant_bits=quant_bits)
        self.quant_bits = quant_bits
        self.calibration_loss = float('inf')
        self.qmin, self.qmax = self.qmin_qmax

    def forward(self, inputs):
        """ Calculate forward pass.
        """
        self._scale = None
        self._zero_point = None
        self._min = None
        self._max = None

        self._mse_min, self._mse_max = self.cal_min_max(inputs)

        return inputs

    def cal_min_max(self, inputs):
        abs_max_value = float(paddle.max(paddle.abs(inputs.flatten())))
        abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value
        s = 0.3
67
        scale_mse = abs_max_value
C
Chang Xu 已提交
68 69 70 71 72 73 74 75 76 77 78
        while s <= 1.0:
            scale = s * abs_max_value
            s += 0.02
            quant_var = paddle.clip(
                paddle.round(inputs / scale * self.qmax), -self.qmax - 1,
                self.qmax)
            quant_dequant_var = quant_var / self.qmax * scale

            mse_loss = float(((inputs - quant_dequant_var)**2).mean())
            if mse_loss <= self.calibration_loss:
                self.calibration_loss = mse_loss
79 80
                scale_mse = scale
        return 0, scale_mse
C
Chang Xu 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

    def cal_thresholds(self):
        """ Compute thresholds for MAX function.
        """
        self._min, self._max = self._mse_min, self._mse_max
        self._scale, self._zero_point = self.cal_scales_zero_points()

    def min_value(self) -> float:
        return self._min

    def max_value(self) -> float:
        return self._max

    def bit_length(self):
        """ Return the bit length of quantized data.
        """
        return self._quant_bits

    def quant_axis(self):
        """ Return quantization axis.
        """
        return -1

    def scales(self):
        """ Return output scales.
        """
        if self._scale is None:
            self.cal_thresholds()
        return self._scale

    def zero_points(self):
        """ Return output zero points.
        """
        if self._zero_point is None:
            self.cal_thresholds()
        return self._zero_point