_utils.py 8.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import numpy as np
17
import pickle
18 19
import paddle
import paddleslim
20
import subprocess
21
import time
22
__all__ = [
23 24
    "save_cls_model", "save_det_model", "save_seg_model", "nearest_interpolate",
    "opt_model", "load_predictor"
25 26 27
]


28 29 30 31
def opt_model(opt="paddle_lite_opt",
              model_file='',
              param_file='',
              optimize_out_type='protobuf',
32
              valid_targets='arm',
Z
zhouzj 已提交
33 34
              enable_fp16=False,
              sparse_ratio=0):
35
    assert os.path.exists(model_file) and os.path.exists(
36
        param_file), f'{model_file} or {param_file} does not exist.'
37
    save_dir = f'./opt_models_tmp/{os.getpid()}_{time.time()}'
38 39 40 41 42 43 44 45
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    assert optimize_out_type in ['protobuf', 'naive_buffer']
    if optimize_out_type == 'protobuf':
        model_out = os.path.join(save_dir, 'pbmodel')
    else:
        model_out = os.path.join(save_dir, 'model')
Z
zhouzj 已提交
46

47
    enable_fp16 = str(enable_fp16).lower()
Z
zhouzj 已提交
48 49 50 51
    sparse_model = True if sparse_ratio > 0 else False
    sparse_threshold = max(sparse_ratio - 0.1, 0.1)

    cmd = f'{opt} --model_file={model_file} --param_file={param_file}  --optimize_out_type={optimize_out_type} --optimize_out={model_out} --valid_targets={valid_targets} --enable_fp16={enable_fp16} --sparse_model={sparse_model} --sparse_threshold={sparse_threshold}'
52 53 54 55 56
    print(f'commands:{cmd}')
    m = subprocess.Popen(
        cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
    out = m.communicate()
    print(out, 'opt done!')
57

58 59
    if optimize_out_type == 'protobuf':
        model_out = os.path.join(model_out, 'model')
60
    else:
61 62
        model_out = model_out + '.nb'
    return model_out
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211


def sample_generator(input_shape, batch_num):
    def __reader__():
        for i in range(batch_num):
            image = np.random.random(input_shape).astype('float32')
            yield image

    return __reader__


def save_cls_model(model, input_shape, save_dir, data_type):
    paddle.jit.save(
        model,
        path=os.path.join(save_dir, 'fp32model'),
        input_spec=[
            paddle.static.InputSpec(
                shape=input_shape, dtype='float32', name='x'),
        ])
    model_file = os.path.join(save_dir, 'fp32model.pdmodel')
    param_file = os.path.join(save_dir, 'fp32model.pdiparams')

    if data_type == 'int8':
        paddle.enable_static()
        exe = paddle.fluid.Executor(paddle.fluid.CPUPlace())
        save_dir = os.path.dirname(model_file)

        quantize_model_path = os.path.join(save_dir, 'int8model')
        if not os.path.exists(quantize_model_path):
            os.makedirs(quantize_model_path)

        paddleslim.quant.quant_post_static(
            executor=exe,
            model_dir=save_dir,
            quantize_model_path=quantize_model_path,
            sample_generator=sample_generator(input_shape, 1),
            model_filename=model_file.split('/')[-1],
            params_filename=param_file.split('/')[-1],
            batch_size=input_shape[0],
            batch_nums=1,
            weight_bits=8,
            activation_bits=8)

        model_file = os.path.join(quantize_model_path, '__model__')
        param_file = os.path.join(quantize_model_path, '__params__')

    return model_file, param_file


def save_det_model(model,
                   input_shape,
                   save_dir,
                   data_type,
                   det_multi_input=False):
    model.eval()
    if det_multi_input:
        input_spec = [{
            "image": paddle.static.InputSpec(
                shape=input_shape, name='image'),
            "im_shape": paddle.static.InputSpec(
                shape=[input_shape[0], 2], name='im_shape'),
            "scale_factor": paddle.static.InputSpec(
                shape=[input_shape[0], 2], name='scale_factor')
        }]
        data = {
            "image": paddle.randn(
                shape=input_shape, dtype='float32', name='image'),
            "im_shape": paddle.randn(
                shape=[input_shape[0], 2], dtype='float32', name='image'),
            "scale_factor": paddle.ones(
                shape=[input_shape[0], 2], dtype='float32', name='image')
        }
    else:
        input_spec = [{
            "image": paddle.static.InputSpec(
                shape=input_shape, name='image'),
        }]
        data = {
            "image": paddle.randn(
                shape=input_shape, dtype='float32', name='image'),
        }

    if data_type == 'fp32':
        static_model = paddle.jit.to_static(model, input_spec=input_spec)
        paddle.jit.save(
            static_model,
            path=os.path.join(save_dir, 'fp32model'),
            input_spec=input_spec)
        model_file = os.path.join(save_dir, 'fp32model.pdmodel')
        param_file = os.path.join(save_dir, 'fp32model.pdiparams')

    else:
        ptq = paddleslim.dygraph.quant.PTQ()
        quant_model = ptq.quantize(model, fuse=True, fuse_list=None)
        quant_model(data)
        quantize_model_path = os.path.join(save_dir, 'int8model')
        if not os.path.exists(quantize_model_path):
            os.makedirs(quantize_model_path)

        ptq.save_quantized_model(quant_model,
                                 os.path.join(quantize_model_path, 'int8model'),
                                 input_spec)

        model_file = os.path.join(quantize_model_path, 'int8model.pdmodel')
        param_file = os.path.join(quantize_model_path, 'int8model.pdiparams')

    return model_file, param_file


def save_seg_model(model, input_shape, save_dir, data_type):
    if data_type == 'fp32':
        paddle.jit.save(
            model,
            path=os.path.join(save_dir, 'fp32model'),
            input_spec=[
                paddle.static.InputSpec(
                    shape=input_shape, dtype='float32', name='x'),
            ])
        model_file = os.path.join(save_dir, 'fp32model.pdmodel')
        param_file = os.path.join(save_dir, 'fp32model.pdiparams')

    else:
        save_dir = os.path.join(save_dir, 'int8model')
        quant_config = {
            'weight_preprocess_type': None,
            'activation_preprocess_type': None,
            'weight_quantize_type': 'channel_wise_abs_max',
            'activation_quantize_type': 'moving_average_abs_max',
            'weight_bits': 8,
            'activation_bits': 8,
            'dtype': 'int8',
            'window_size': 10000,
            'moving_rate': 0.9,
            'quantizable_layer_type': ['Conv2D', 'Linear'],
        }
        quantizer = paddleslim.QAT(config=quant_config)
        quantizer.quantize(model)
        quantizer.save_quantized_model(
            model,
            save_dir,
            input_spec=[
                paddle.static.InputSpec(
                    shape=input_shape, dtype='float32')
            ])

        model_file = f'{save_dir}.pdmodel'
        param_file = f'{save_dir}.pdiparams'

    return model_file, param_file
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233


def nearest_interpolate(features, data):
    def distance(x, y):
        x = np.array(x)
        y = np.array(y)
        return np.sqrt(np.sum(np.square(x - y)))

    if len(data) <= 0:
        return None
    data_features = data[:, 0:-1]
    latency = data[:, -1]
    idx = 0
    dist = distance(features, data_features[0])
    for i in range(1, len(data_features)):
        cur_dist = distance(features, data_features[i])
        if cur_dist < dist:
            idx = i
            dist = cur_dist
    return latency[idx]


234 235
def download_predictor(op_dir, op):
    """Download op predictors' model file
236 237
        
        Args:
238
            op_dir(str): the path to op predictor. Actually, it's the hardware information. 
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
            op(str): the op type.
        Returns:
            op_path: The path of the file.
        """
    if not os.path.exists(op_dir):
        os.makedirs(op_dir)

    op_path = os.path.join(op_dir, op + '_predictor.pkl')
    if not os.path.exists(op_path):
        subprocess.call(
            f'wget -P {op_dir} https://paddlemodels.bj.bcebos.com/PaddleSlim/analysis/{op_path}',
            shell=True)
    return op_path


def load_predictor(op_type, op_dir, data_type='fp32'):
    op = op_type
    if 'conv2d' in op_type:
Z
zhouzj 已提交
257
        op = f'{op_type}_{data_type}'
258 259 260
    elif 'matmul' in op_type:
        op = 'matmul'

261
    op_path = download_predictor(op_dir, op)
262 263 264 265
    with open(op_path, 'rb') as f:
        model = pickle.load(f)

    return model