index.html 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  
  <link rel="shortcut icon" href="../../img/favicon.ico">
  <title>Sensitivity demo - PaddleSlim Docs</title>
  <link href='https://fonts.googleapis.com/css?family=Lato:400,700|Roboto+Slab:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>

  <link rel="stylesheet" href="../../css/theme.css" type="text/css" />
  <link rel="stylesheet" href="../../css/theme_extra.css" type="text/css" />
  <link rel="stylesheet" href="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
17
  <link href="../../extra.css" rel="stylesheet">
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  
  <script>
    // Current page data
    var mkdocs_page_name = "Sensitivity demo";
    var mkdocs_page_input_path = "tutorials/sensitivity_demo.md";
    var mkdocs_page_url = null;
  </script>
  
  <script src="../../js/jquery-2.1.1.min.js" defer></script>
  <script src="../../js/modernizr-2.8.3.min.js" defer></script>
  <script src="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
  <script>hljs.initHighlightingOnLoad();</script> 
  
</head>

<body class="wy-body-for-nav" role="document">

  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
      <div class="wy-side-nav-search">
        <a href="../.." class="icon icon-home"> PaddleSlim Docs</a>
        <div role="search">
  <form id ="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" title="Type search term here" />
  </form>
</div>
      </div>

      <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
	<ul class="current">
	  
          
            <li class="toctree-l1">
		
    <a class="" href="../..">Home</a>
	    </li>
          
            <li class="toctree-l1">
		
59 60 61 62 63
    <a class="" href="../../model_zoo/">模型库</a>
	    </li>
          
            <li class="toctree-l1">
		
64
    <span class="caption-text">教程</span>
65 66 67
    <ul class="subnav">
                <li class="">
                    
68 69 70 71
    <a class="" href="../pruning_tutorial/">图像分类模型通道剪裁-快速开始</a>
                </li>
                <li class="">
                    
72
    <a class="" href="../quant_post_demo/">离线量化</a>
73 74 75
                </li>
                <li class="">
                    
76
    <a class="" href="../quant_aware_demo/">量化训练</a>
77 78 79
                </li>
                <li class="">
                    
80
    <a class="" href="../quant_embedding_demo/">Embedding量化</a>
81 82 83
                </li>
                <li class="">
                    
84
    <a class="" href="../nas_demo/">SA搜索</a>
85 86 87
                </li>
                <li class="">
                    
88
    <a class="" href="../../search_space/">搜索空间</a>
89 90 91
                </li>
                <li class="">
                    
92
    <a class="" href="../distillation_demo/">知识蒸馏</a>
93
                </li>
94 95 96 97 98
    </ul>
	    </li>
          
            <li class="toctree-l1">
		
99
    <span class="caption-text">API</span>
100
    <ul class="subnav">
101 102
                <li class="">
                    
103
    <a class="" href="../../api/quantization_api/">量化</a>
104 105 106
                </li>
                <li class="">
                    
107
    <a class="" href="../../api/prune_api/">剪枝与敏感度</a>
108 109 110
                </li>
                <li class="">
                    
111
    <a class="" href="../../api/analysis_api/">模型分析</a>
112 113 114
                </li>
                <li class="">
                    
115
    <a class="" href="../../api/single_distiller_api/">知识蒸馏</a>
116 117 118
                </li>
                <li class="">
                    
119 120 121 122 123
    <a class="" href="../../api/nas_api/">SA搜索</a>
                </li>
                <li class="">
                    
    <a class="" href="../../table_latency/">硬件延时评估表</a>
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
                </li>
    </ul>
	    </li>
          
            <li class="toctree-l1">
		
    <a class="" href="../../algo/algo/">算法原理</a>
	    </li>
          
        </ul>
      </div>
      &nbsp;
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="../..">PaddleSlim Docs</a>
      </nav>

      
      <div class="wy-nav-content">
        <div class="rst-content">
          <div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
    <li><a href="../..">Docs</a> &raquo;</li>
    
      
    
    <li>Sensitivity demo</li>
    <li class="wy-breadcrumbs-aside">
      
158
        <a href="https://github.com/PaddlePaddle/PaddleSlim/edit/master/docs/tutorials/sensitivity_demo.md"
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
          class="icon icon-github"> Edit on GitHub</a>
      
    </li>
  </ul>
  <hr/>
</div>
          <div role="main">
            <div class="section">
              
                <p>该示例介绍如何分析卷积网络中各卷积层的敏感度,以及如何根据计算出的敏感度选择一组合适的剪裁率。
该示例默认会自动下载并使用MNIST数据。支持以下模型:</p>
<ul>
<li>MobileNetV1</li>
<li>MobileNetV2</li>
<li>ResNet50</li>
</ul>
<h2 id="1">1. 接口介绍<a class="headerlink" href="#1" title="Permanent link">#</a></h2>
<p>该示例涉及以下接口:</p>
<ul>
<li><a href="https://paddlepaddle.github.io/PaddleSlim/api/prune_api/#sensitivity">paddleslim.prune.sensitivity</a></li>
<li><a href="https://paddlepaddle.github.io/PaddleSlim/api/prune_api/#merge_sensitive">paddleslim.prune.merge_sensitive</a></li>
<li><a href="https://paddlepaddle.github.io/PaddleSlim/api/prune_api/#get_ratios_by_losssensitivities-loss">paddleslim.prune.get_ratios_by_loss</a></li>
</ul>
<h2 id="2">2. 运行示例<a class="headerlink" href="#2" title="Permanent link">#</a></h2>
<p>在路径<code>PaddleSlim/demo/sensitive</code>下执行以下代码运行示例:</p>
184
<div class="codehilite"><pre><span></span><span class="nb">export</span> <span class="nv">CUDA_VISIBLE_DEVICES</span><span class="o">=</span><span class="m">0</span>
185
python train.py --model <span class="s2">&quot;MobileNetV1&quot;</span>
186 187 188 189 190 191 192 193 194
</pre></div>

<p>通过<code>python train.py --help</code>查看更多选项。</p>
<h2 id="3">3. 重要步骤说明<a class="headerlink" href="#3" title="Permanent link">#</a></h2>
<h3 id="31">3.1 计算敏感度<a class="headerlink" href="#31" title="Permanent link">#</a></h3>
<p>计算敏感度之前,用户需要搭建好用于测试的网络,以及实现评估模型精度的回调函数。</p>
<p>调用<code>paddleslim.prune.sensitivity</code>接口计算敏感度。敏感度信息会追加到<code>sensitivities_file</code>选项所指定的文件中,如果需要重新计算敏感度,需要先删除<code>sensitivities_file</code>文件。</p>
<p>如果模型评估速度较慢,可以通过多进程的方式加速敏感度计算过程。比如在进程1中设置<code>pruned_ratios=[0.1, 0.2, 0.3, 0.4]</code>,并将敏感度信息存放在文件<code>sensitivities_0.data</code>中,然后在进程2中设置<code>pruned_ratios=[0.5, 0.6, 0.7]</code>,并将敏感度信息存储在文件<code>sensitivities_1.data</code>中。这样每个进程只会计算指定剪切率下的敏感度信息。多进程可以运行在单机多卡,或多机多卡。</p>
<p>代码如下:</p>
195
<div class="codehilite"><pre><span></span><span class="c1"># 进程1</span>
196 197 198 199 200 201 202
<span class="n">sensitivity</span><span class="p">(</span>
    <span class="n">val_program</span><span class="p">,</span>
    <span class="n">place</span><span class="p">,</span>
    <span class="n">params</span><span class="p">,</span>
    <span class="n">test</span><span class="p">,</span>
    <span class="n">sensitivities_file</span><span class="o">=</span><span class="s2">&quot;sensitivities_0.data&quot;</span><span class="p">,</span>
    <span class="n">pruned_ratios</span><span class="o">=</span><span class="p">[</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">])</span>
203 204
</pre></div>

205
<div class="codehilite"><pre><span></span><span class="c1"># 进程2</span>
206 207 208 209 210 211 212
<span class="n">sensitivity</span><span class="p">(</span>
    <span class="n">val_program</span><span class="p">,</span>
    <span class="n">place</span><span class="p">,</span>
    <span class="n">params</span><span class="p">,</span>
    <span class="n">test</span><span class="p">,</span>
    <span class="n">sensitivities_file</span><span class="o">=</span><span class="s2">&quot;sensitivities_1.data&quot;</span><span class="p">,</span>
    <span class="n">pruned_ratios</span><span class="o">=</span><span class="p">[</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.7</span><span class="p">])</span>
213 214 215 216
</pre></div>

<h3 id="32">3.2 合并敏感度<a class="headerlink" href="#32" title="Permanent link">#</a></h3>
<p>如果用户通过上一节多进程的方式生成了多个存储敏感度信息的文件,可以通过<code>paddleslim.prune.merge_sensitive</code>将其合并,合并后的敏感度信息存储在一个<code>dict</code>中。代码如下:</p>
217
<div class="codehilite"><pre><span></span><span class="n">sens</span> <span class="o">=</span> <span class="n">merge_sensitive</span><span class="p">([</span><span class="s2">&quot;./sensitivities_0.data&quot;</span><span class="p">,</span> <span class="s2">&quot;./sensitivities_1.data&quot;</span><span class="p">])</span>
218 219 220 221
</pre></div>

<h3 id="33">3.3 计算剪裁率<a class="headerlink" href="#33" title="Permanent link">#</a></h3>
<p>调用<code>paddleslim.prune.get_ratios_by_loss</code>接口计算一组剪裁率。</p>
222
<div class="codehilite"><pre><span></span><span class="n">ratios</span> <span class="o">=</span> <span class="n">get_ratios_by_loss</span><span class="p">(</span><span class="n">sens</span><span class="p">,</span> <span class="mf">0.01</span><span class="p">)</span>
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
</pre></div>

<p>其中,<code>0.01</code>为一个阈值,对于任意卷积层,其剪裁率为使精度损失低于阈值<code>0.01</code>的最大剪裁率。</p>
<p>用户在计算出一组剪裁率之后可以通过接口<code>paddleslim.prune.Pruner</code>剪裁网络,并用接口<code>paddleslim.analysis.flops</code>计算<code>FLOPs</code>。如果<code>FLOPs</code>不满足要求,调整阈值重新计算出一组剪裁率。</p>
              
            </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <!-- Copyright etc -->
    
  </div>

  Built with <a href="http://www.mkdocs.org">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
      
        </div>
      </div>

    </section>

  </div>

  <div class="rst-versions" role="note" style="cursor: pointer">
    <span class="rst-current-version" data-toggle="rst-current-version">
      
          <a href="https://github.com/PaddlePaddle/PaddleSlim/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
      
      
      
    </span>
</div>
    <script>var base_url = '../..';</script>
    <script src="../../js/theme.js" defer></script>
      <script src="../../mathjax-config.js" defer></script>
      <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML" defer></script>
      <script src="../../search/main.js" defer></script>

</body>
</html>