export_model.py 2.8 KB
Newer Older
S
slf12 已提交
1 2 3 4 5 6 7 8 9 10
import os
import sys
import logging
import paddle
import argparse
import functools
import math
import time
import numpy as np
import paddle.fluid as fluid
W
whs 已提交
11 12
sys.path[0] = os.path.join(
    os.path.dirname("__file__"), os.path.pardir, os.path.pardir)
S
slf12 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
from paddleslim.common import get_logger
import models
from utility import add_arguments, print_arguments

_logger = get_logger(__name__, level=logging.INFO)

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('use_gpu',          bool, True,                "Whether to use GPU or not.")
add_arg('model',            str,  "MobileNet",                "The target model.")
add_arg('pretrained_model', str,  "../pretrained_model/MobileNetV1_pretained",                "Whether to use pretrained model.")
add_arg('data',             str, "mnist",                 "Which data to use. 'mnist' or 'imagenet'")
add_arg('test_period',      int, 10,                 "Test period in epoches.")
# yapf: enable

model_list = [m for m in dir(models) if "__" not in m]


def export_model(args):
    if args.data == "mnist":
        import paddle.dataset.mnist as reader
        train_reader = reader.train()
        val_reader = reader.test()
        class_dim = 10
        image_shape = "1,28,28"
    elif args.data == "imagenet":
        import imagenet_reader as reader
        train_reader = reader.train()
        val_reader = reader.val()
        class_dim = 1000
        image_shape = "3,224,224"
    else:
        raise ValueError("{} is not supported.".format(args.data))

    image_shape = [int(m) for m in image_shape.split(",")]
    image = fluid.data(
        name='image', shape=[None] + image_shape, dtype='float32')
    assert args.model in model_list, "{} is not in lists: {}".format(
        args.model, model_list)
    # model definition
    model = models.__dict__[args.model]()
    out = model.net(input=image, class_dim=class_dim)
    val_program = fluid.default_main_program().clone(for_test=True)
    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    if args.pretrained_model:

        def if_exist(var):
            return os.path.exists(
                os.path.join(args.pretrained_model, var.name))

        fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist)
    else:
        assert False, "args.pretrained_model must set"

    fluid.io.save_inference_model(
        './inference_model/' + args.model,
        feeded_var_names=[image.name],
        target_vars=[out],
        executor=exe,
        main_program=val_program,
        model_filename='model',
        params_filename='weights')


def main():
    args = parser.parse_args()
    print_arguments(args)
    export_model(args)


if __name__ == '__main__':
    main()