eval.py 3.4 KB
Newer Older
S
slf12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
import sys
import numpy as np
import argparse
import functools

import paddle
import paddle.fluid as fluid
W
whs 已提交
23 24
sys.path[0] = os.path.join(
    os.path.dirname("__file__"), os.path.pardir, os.path.pardir)
S
slf12 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
import imagenet_reader as reader
from utility import add_arguments, print_arguments

parser = argparse.ArgumentParser(description=__doc__)
# yapf: disable
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg('use_gpu',          bool, True,                 "Whether to use GPU or not.")
add_arg('model_path', str,  "./pruning/checkpoints/resnet50/2/eval_model/",                 "Whether to use pretrained model.")
add_arg('model_name', str,  None, "model filename for inference model")
add_arg('params_name', str, None, "params filename for inference model")
# yapf: enable


def eval(args):
    # parameters from arguments

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    val_program, feed_target_names, fetch_targets = fluid.io.load_inference_model(
        args.model_path,
        exe,
        model_filename=args.model_name,
        params_filename=args.params_name)
    val_reader = paddle.batch(reader.val(), batch_size=128)
    feeder = fluid.DataFeeder(
        place=place, feed_list=feed_target_names, program=val_program)

    results = []
    for batch_id, data in enumerate(val_reader()):

        # top1_acc, top5_acc
        if len(feed_target_names) == 1:
            # eval "infer model", which input is image, output is classification probability
            image = [[d[0]] for d in data]
            label = [[d[1]] for d in data]
            feed_data = feeder.feed(image)
            pred = exe.run(val_program,
                           feed=feed_data,
                           fetch_list=fetch_targets)
            pred = np.array(pred[0])
            label = np.array(label)
            sort_array = pred.argsort(axis=1)
            top_1_pred = sort_array[:, -1:][:, ::-1]
            top_1 = np.mean(label == top_1_pred)
            top_5_pred = sort_array[:, -5:][:, ::-1]
            acc_num = 0
            for i in range(len(label)):
                if label[i][0] in top_5_pred[i]:
                    acc_num += 1
            top_5 = float(acc_num) / len(label)
            results.append([top_1, top_5])
        else:
            # eval "eval model", which inputs are image and label, output is top1 and top5 accuracy
            result = exe.run(val_program,
                             feed=feeder.feed(data),
                             fetch_list=fetch_targets)
            result = [np.mean(r) for r in result]
            results.append(result)
    result = np.mean(np.array(results), axis=0)
    print("top1_acc/top5_acc= {}".format(result))
    sys.stdout.flush()


def main():
    args = parser.parse_args()
    print_arguments(args)
    eval(args)


if __name__ == '__main__':
    main()