test_act_api.py 5.1 KB
Newer Older
W
whs 已提交
1 2
import sys
import os
C
ceci3 已提交
3
sys.path.append("../../")
W
whs 已提交
4 5 6 7 8 9 10 11
import unittest
import tempfile
import paddle
import unittest
import numpy as np
from paddle.io import Dataset
from paddleslim.auto_compression import AutoCompression
from paddleslim.auto_compression.config_helpers import load_config
12
from paddleslim.auto_compression.utils.load_model import load_inference_model
W
whs 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123


class RandomEvalDataset(Dataset):
    def __init__(self, num_samples, image_shape=[3, 32, 32], class_num=10):
        self.num_samples = num_samples
        self.image_shape = image_shape
        self.class_num = class_num

    def __getitem__(self, idx):
        image = np.random.random(self.image_shape).astype('float32')
        return image

    def __len__(self):
        return self.num_samples


class ACTBase(unittest.TestCase):
    def __init__(self, *args, **kwargs):
        super(ACTBase, self).__init__(*args, **kwargs)
        paddle.enable_static()
        self.tmpdir = tempfile.TemporaryDirectory(prefix="test_")
        self.infer_model_dir = os.path.join(self.tmpdir.name, "infer")
        self.create_program()
        self.create_dataloader()

    def create_program(self):
        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        with paddle.static.program_guard(main_program, startup_program):
            data = paddle.static.data(
                name='data', shape=[-1, 3, 32, 32], dtype='float32')
            tmp = paddle.static.nn.conv2d(
                input=data, num_filters=2, filter_size=3)
            out = paddle.static.nn.conv2d(
                input=tmp, num_filters=2, filter_size=3)
        exe = paddle.static.Executor(paddle.CPUPlace())
        exe.run(startup_program)

        paddle.static.save_inference_model(
            self.infer_model_dir, [data], [out], exe, program=main_program)
        print(f"saved infer model to [{self.infer_model_dir}]")

    def create_dataloader(self):
        # define a random dataset
        self.eval_dataset = RandomEvalDataset(32)

    def __del__(self):
        self.tmpdir.cleanup()


class TestYamlQATDistTrain(ACTBase):
    def __init__(self, *args, **kwargs):
        super(TestYamlQATDistTrain, self).__init__(*args, **kwargs)

    def test_compress(self):
        image = paddle.static.data(
            name='data', shape=[-1, 3, 32, 32], dtype='float32')
        train_loader = paddle.io.DataLoader(
            self.eval_dataset, feed_list=[image], batch_size=4)
        ac = AutoCompression(
            model_dir=self.tmpdir.name,
            model_filename="infer.pdmodel",
            params_filename="infer.pdiparams",
            save_dir="output",
            config="./qat_dist_train.yaml",
            train_dataloader=train_loader,
            eval_dataloader=train_loader)  # eval_function to verify accuracy
        ac.compress()


class TestSetQATDist(ACTBase):
    def __init__(self, *args, **kwargs):
        super(TestSetQATDist, self).__init__(*args, **kwargs)

    def test_compress(self):
        image = paddle.static.data(
            name='data', shape=[-1, 3, 32, 32], dtype='float32')
        train_loader = paddle.io.DataLoader(
            self.eval_dataset, feed_list=[image], batch_size=4)
        ac = AutoCompression(
            model_dir=self.tmpdir.name,
            model_filename="infer.pdmodel",
            params_filename="infer.pdiparams",
            save_dir="output",
            config={"QAT", "Distillation"},
            train_dataloader=train_loader,
            eval_dataloader=train_loader)  # eval_function to verify accuracy
        ac.compress()


class TestDictQATDist(ACTBase):
    def __init__(self, *args, **kwargs):
        super(TestDictQATDist, self).__init__(*args, **kwargs)

    def test_compress(self):
        config = load_config("./qat_dist_train.yaml")
        image = paddle.static.data(
            name='data', shape=[-1, 3, 32, 32], dtype='float32')
        train_loader = paddle.io.DataLoader(
            self.eval_dataset, feed_list=[image], batch_size=4)
        ac = AutoCompression(
            model_dir=self.tmpdir.name,
            model_filename="infer.pdmodel",
            params_filename="infer.pdiparams",
            save_dir="output",
            config=config,
            train_dataloader=train_loader,
            eval_dataloader=train_loader)  # eval_function to verify accuracy
        ac.compress()


124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
class TestLoadONNXModel(ACTBase):
    def __init__(self, *args, **kwargs):
        super(TestLoadONNXModel, self).__init__(*args, **kwargs)
        os.system(
            'wget https://paddle-slim-models.bj.bcebos.com/act/yolov5s.onnx')
        self.model_dir = 'yolov5s.onnx'

    def test_compress(self):
        place = paddle.CPUPlace()
        exe = paddle.static.Executor(place)
        _, _, _ = load_inference_model(
            self.model_dir,
            executor=exe,
            model_filename='model.pdmodel',
            params_filename='model.paiparams')
        # reload model
        _, _, _ = load_inference_model(
            self.model_dir,
            executor=exe,
            model_filename='model.pdmodel',
            params_filename='model.paiparams')


W
whs 已提交
147 148
if __name__ == '__main__':
    unittest.main()