resnet.py 5.1 KB
Newer Older
B
Bai Yifan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None):
        super(ConvBNLayer, self).__init__()

        self._conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            bias_attr=False)

        self._batch_norm = BatchNorm(num_filters, act=act)

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)

        return y


class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self, num_channels, num_filters, stride, shortcut=True):
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
            act='relu')
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu')
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None)

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride)

        self.shortcut = shortcut

        self._num_channels_out = num_filters * 4

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        y = fluid.layers.elementwise_add(x=short, y=conv2)

        layer_helper = LayerHelper(self.full_name(), act='relu')
        return layer_helper.append_activation(y)


class ResNet(fluid.dygraph.Layer):
    def __init__(self, layers=50, class_dim=100):
        super(ResNet, self).__init__()

        self.layers = layers
        supported_layers = [34, 50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        if layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        num_channels = [64, 256, 512, 1024]
        num_filters = [64, 128, 256, 512]

        self.conv = ConvBNLayer(
            num_channels=3,
            num_filters=64,
            filter_size=7,
            stride=1,
            act='relu')
        self.pool2d_max = Pool2D(
            pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')

        self.bottleneck_block_list = []
        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
                    BottleneckBlock(
                        num_channels=num_channels[block]
                        if i == 0 else num_filters[block] * 4,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        shortcut=shortcut))
                self.bottleneck_block_list.append(bottleneck_block)
                shortcut = True

        self.pool2d_avg = Pool2D(
            pool_size=7, pool_type='avg', global_pooling=True)

        self.pool2d_avg_output = num_filters[len(num_filters) - 1] * 4 * 1 * 1

        import math
        stdv = 1.0 / math.sqrt(2048 * 1.0)

        self.out = Linear(
            self.pool2d_avg_output,
            class_dim,
            param_attr=fluid.param_attr.ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv, stdv)))

    def forward(self, inputs):
        y = self.conv(inputs)
        for bottleneck_block in self.bottleneck_block_list:
            y = bottleneck_block(y)
        y = self.pool2d_avg(y)
        y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output])
        y = self.out(y)
        return y