ddpg_controller.py 6.3 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import parl
from parl import layers
from paddle import fluid
from ..utils import RLCONTROLLER, action_mapping
from ...controller import RLBaseController
from .ddpg_model import DefaultDDPGModel as default_ddpg_model
from .noise import AdaptiveNoiseSpec as default_noise
from parl.utils import ReplayMemory

__all__ = ['DDPG']


class DDPGAgent(parl.Agent):
    def __init__(self, algorithm, obs_dim, act_dim):
        assert isinstance(obs_dim, int)
        assert isinstance(act_dim, int)
        self.obs_dim = obs_dim
        self.act_dim = act_dim
        super(DDPGAgent, self).__init__(algorithm)

        # Attention: In the beginning, sync target model totally.
        self.alg.sync_target(decay=0)

    def build_program(self):
        self.pred_program = fluid.Program()
        self.learn_program = fluid.Program()

        with fluid.program_guard(self.pred_program):
C
ceci3 已提交
44 45
            obs = fluid.data(
                name='obs', shape=[None, self.obs_dim], dtype='float32')
C
ceci3 已提交
46 47 48
            self.pred_act = self.alg.predict(obs)

        with fluid.program_guard(self.learn_program):
C
ceci3 已提交
49 50 51 52 53 54 55 56 57
            obs = fluid.data(
                name='obs', shape=[None, self.obs_dim], dtype='float32')
            act = fluid.data(
                name='act', shape=[None, self.act_dim], dtype='float32')
            reward = fluid.data(name='reward', shape=[None], dtype='float32')
            next_obs = fluid.data(
                name='next_obs', shape=[None, self.obs_dim], dtype='float32')
            terminal = fluid.data(
                name='terminal', shape=[None, 1], dtype='bool')
C
ceci3 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
            _, self.critic_cost = self.alg.learn(obs, act, reward, next_obs,
                                                 terminal)

    def predict(self, obs):
        act = self.fluid_executor.run(self.pred_program,
                                      feed={'obs': obs},
                                      fetch_list=[self.pred_act])[0]
        return act

    def learn(self, obs, act, reward, next_obs, terminal):
        feed = {
            'obs': obs,
            'act': act,
            'reward': reward,
            'next_obs': next_obs,
            'terminal': terminal
        }
        critic_cost = self.fluid_executor.run(self.learn_program,
                                              feed=feed,
                                              fetch_list=[self.critic_cost])[0]
        self.alg.sync_target()
        return critic_cost


@RLCONTROLLER.register
class DDPG(RLBaseController):
    def __init__(self, range_tables, use_gpu=False, **kwargs):
        self.use_gpu = use_gpu
        self.range_tables = range_tables - np.asarray(1)
        self.act_dim = len(self.range_tables)
        self.obs_dim = kwargs.get('obs_dim')
        self.model = kwargs.get(
            'model') if 'model' in kwargs else default_ddpg_model
        self.actor_lr = kwargs.get(
            'actor_lr') if 'actor_lr' in kwargs else 1e-4
        self.critic_lr = kwargs.get(
            'critic_lr') if 'critic_lr' in kwargs else 1e-3
        self.gamma = kwargs.get('gamma') if 'gamma' in kwargs else 0.99
        self.tau = kwargs.get('tau') if 'tau' in kwargs else 0.001
        self.memory_size = kwargs.get(
            'memory_size') if 'memory_size' in kwargs else 10
        self.reward_scale = kwargs.get(
            'reward_scale') if 'reward_scale' in kwargs else 0.1
        self.batch_size = kwargs.get(
            'controller_batch_size') if 'controller_batch_size' in kwargs else 1
        self.actions_noise = kwargs.get(
            'actions_noise') if 'actions_noise' in kwargs else default_noise
        self.action_dist = 0.0
        self.place = fluid.CUDAPlace(0) if self.use_gpu else fluid.CPUPlace()

        model = self.model(self.act_dim)

        if self.actions_noise:
            self.actions_noise = self.actions_noise()

        algorithm = parl.algorithms.DDPG(
            model,
            gamma=self.gamma,
            tau=self.tau,
            actor_lr=self.actor_lr,
            critic_lr=self.critic_lr)
        self.agent = DDPGAgent(algorithm, self.obs_dim, self.act_dim)
        self.rpm = ReplayMemory(self.memory_size, self.obs_dim, self.act_dim)

        self.pred_program = self.agent.pred_program
        self.learn_program = self.agent.learn_program
        self.param_dict = self.get_params(self.learn_program)

    def next_tokens(self, obs, params_dict, is_inference=False):
        batch_obs = np.expand_dims(obs, axis=0)
        self.set_params(self.pred_program, params_dict, self.place)
        actions = self.agent.predict(batch_obs.astype('float32'))
        ### add noise to action
        if self.actions_noise and is_inference == False:
            actions_noise = np.clip(
                np.random.normal(
                    actions, scale=self.actions_noise.stdev_curr),
                -1.0,
                1.0)
            self.action_dist = np.mean(np.abs(actions_noise - actions))
        else:
            actions_noise = actions
        actions_noise = action_mapping(actions_noise, self.range_tables)
        return actions_noise

    def _update_noise(self, actions_dist):
        self.actions_noise.update(actions_dist)

    def update(self, rewards, params_dict, obs, actions, obs_next, terminal):
        self.set_params(self.learn_program, params_dict, self.place)
        self.rpm.append(obs, actions, self.reward_scale * rewards, obs_next,
                        terminal)
        if self.actions_noise:
            self._update_noise(self.action_dist)
        if self.rpm.size() > self.memory_size:
            obs, actions, rewards, obs_next, terminal = rpm.sample_batch(
                self.batch_size)
        self.agent.learn(obs, actions, rewards, obs_next, terminal)
        params_dict = self.get_params(self.learn_program)
        return params_dict